
Oracle® Rdb for OpenVMS

Table of Contents
Oracle® Rdb for OpenVMS..1

Release Notes...2

April 2003..3

Contents...4

Preface..5

Purpose of This Manual...6

Intended Audience..7

Document Structure..8

Chapter 1Installing Oracle Rdb Release 7.1.1...9

1.1 Alpha EV7 Processor Support Added...10

1.2 Oracle Rdb V7.1 Version Numbering Enhancement..11

1.3 Requirements...12

1.4 Invoking VMSINSTAL ..13

1.5 Stopping the Installation..14

1.6 After Installing Oracle Rdb...15

1.7 Oracle Rdb Release 7.1.1.0.1 Optimized for Alpha EV56 (21164A Processor Chip) and Later
 Platforms...16

1.8 Maximum OpenVMS Version Check Added...17

1.9 VMS$MEM_RESIDENT_USER Rights Identifier Required..18

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.1.1...19

2.1 Software Errors Fixed That Apply to All Interfaces...20
2.1.1 DBR Process Bugchecks In DBR$DO_C_AIJBUF During Node−failure Recovery..................20
2.1.2 2PC Transaction Rolled Back If Transaction Manager Unavailable..20
2.1.3 New After Image Journal Format...20
2.1.4 Sequence Numbers Repeat...21
2.1.5 Recovered Database May Not Have Correct Sequences..21
2.1.6 Bugcheck When Reserving Sequence Slots at RUJ$JOURNAL + 028C....................................23
2.1.7 Left Outer Query With OR Predicate Returns Wrong Result...23
2.1.8 Left Outer Query With OR Predicate Returns Wrong Result...24

Oracle® Rdb for OpenVMS

i

Table of Contents
2.1 Software Errors Fixed That Apply to All Interfaces

2.1.9 GROUP BY Query With Match Strategy Returns Wrong Result..25
2.1.10 Query Bugchecks When IN Clause Contains More Than 2 Dbkeys..27
2.1.11 Left OJ Query Applying ZigZag Match Strategy Bugchecks..28
2.1.12 Unexpected Privileges Required Using VLM or SSB Features with OpenVMS Galaxy
 Support Enabled..29
2.1.13 Processes Loop at IPL2 When VLM or SSB Features Used..29
2.1.14 Memory Leak With Preattached SQL/Services Service and Persona Enabled..........................30
2.1.15 Persona Rights Not Honored With Non−privileged SQL/Services Service...............................30

2.2 SQL Errors Fixed...31
2.2.1 Simple CASE and DECODE Not Processed Correctly In Dynamic SQL...................................31
2.2.2 PARTITION Clause Of SET TRANSACTION ... RESERVING Ignored..................................31
2.2.3 Unexpected BAD_SYM Error When Recreating Table With IDENTITY Column....................32

2.3 Oracle RMU Errors Fixed...33
2.3.1 Data Corruption In V7.0 After RMU/CONVERT/ROLLBACK If Rows Updated in V7.1........33
2.3.2 RMU /UNLOAD /AFTER_JOURNAL Indicated Record Length Incorrect...............................33
2.3.3 RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS Leaves AIJ Open...............................33
2.3.4 Some RMU Parallel Backup Parameters Were Incorrectly Set..34
2.3.5 RMU Parallel Backup New Style Tape Density Not Set Correctly..35
2.3.6 RMU Parallel Backup Sometimes Did Not Update the Database Root.......................................36
2.3.7 RMU/BACKUP/AFTER_JOURNAL to Tape Could Sometimes Hang......................................37
2.3.8 RMU Load Support For Interchange (RBR) Files From SQL EXPORT.....................................38
2.3.9 Various RMU Commands Return File Access Conflict Errors..39

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.1.0.5..40

3.1 Software Errors Fixed That Apply to All Interfaces...41
3.1.1 Oracle Rdb Optimized for Alpha EV56 (21164A Processor Chip) and Later Platforms.............41

Chapter 4Software Errors Fixed in Oracle Rdb Release 7.1.0.4..42

4.1 Software Errors Fixed That Apply to All Interfaces...43
4.1.1 Deadlocks From SET TRANSACTION RESERVING When Fast Commit Enabled.................43
4.1.2 Bugcheck at RDMS$$ALPHA$CONVERT_SORT+00000778..43
4.1.3 RDMS$CREATE_LAREA_NOLOGGING Partly Ignored for Objects with Row Caches........44
4.1.4 Exception in RDMS$$KOD_ISCAN_GET_NEXT...44
4.1.5 Records Incorrectly Applied to a Key Entry in Sorted Ranked Index..46
4.1.6 LRS Uses Too Much CPU in 7.1.0.1, 7.1.0.2, and 7.1.0.3...46
4.1.7 Persona Nopriv Error Using SQLplus and Other OCI Clients...47
4.1.8 Query With OR and Repeated AND Predicates Looped Forever...48
4.1.9 %SYSTEM−F−ILLEGAL_SHADOW, Illegal Formed Trap Shadow Error...............................48
4.1.10 AIJBL_START_FLG Not Always Set Correctly in AIJ..49
4.1.11 Left Outer Join Query With UNION Legs Returns Wrong Results...49
4.1.12 Query With EXISTS Clause Using Hashed Index Returns Wrong Results...............................51
4.1.13 Performance of Self−Referencing Foreign Key Constraints..53
4.1.14 Online Change of Storage Area Access Mode Now Allowed..55

Oracle® Rdb for OpenVMS

ii

Table of Contents
4.1 Software Errors Fixed That Apply to All Interfaces

4.1.15 RCS Exits with COSI−F−SUBLOCKS..55
4.1.16 TRUNCATE TABLE Results in RMU−E−BADABMPAG & RMU−W−ABMBITERR
 Messages from RMU /VERIFY..55
4.1.17 Execution Trace For Dynamic Estimation Inaccurate..55
4.1.18 Dynamic Optimizer Index Estimation May Be Wrong..57
4.1.19 DBR Does Not Write Valid TSN for Commit of 2PC Transaction..58
4.1.20 Various Problems With Dynamic Estimation of Ranked Indices...59
4.1.21 Count Scan Optimization Returns Wrong Results...59
4.1.22 Insert Statement Fails With Constraint Violation...60
4.1.23 Followup on Bug 2529598 From Oracle Rdb Release 7.0.6.5...61
4.1.24 Ranked Index Node Corruption After Insert of Duplicate Record...63
4.1.25 Unexpected Bugcheck When Using RDMS$SET_FLAGS Logical..64
4.1.26 NOT NULL Test in OJ Query With UNION Legs Returns Wrong Results..............................65
4.1.27 Bugchecks at PSII2SCANRESETSCAN...66
4.1.28 Stack Overflow Exception Replaced by %RDMS−E−NOSOL_FOUND Signal......................66
4.1.29 Another OR With Constant Predicate Returns Wrong Results..67
4.1.30 Ranked Index Node Corruption After Deletion of Duplicate Record..68

4.2 SQL Errors Fixed...70
4.2.1 Incorrect Handling of FOR Loop Select List Columns..70
4.2.2 Unexpected Error on FOR Loop With Dialect ORACLE LEVEL1...71
4.2.3 Unexpected Truncation of Data Assigned in Precompiled SQL..72
4.2.4 CREATE SEQUENCE Not Defaulting to WAIT..72
4.2.5 Input Line Limit Too Low..73
4.2.6 CASE Expression Causes SQL Bugcheck @SQL$$BLR_MSG_FIELD_REF + 1E8................74
4.2.7 %SQL−F−INVFUNREF on Subquery of SELECT with GROUP BY..74
4.2.8 Bugcheck on DDL Command With a Host Variable..75
4.2.9 VALUE Keyword Not Recognized in DDL Statement..75
4.2.10 ALTER TABLE May Result in a Bugcheck at RDMS$$COMPILE_RTN_EXPR..................76
4.2.11 DROP VIEW Corrupts Base Table AUTOMATIC Columns..76
4.2.12 RDB−E−BAD_REQ_HANDLE in Stored Function..77
4.2.13 Unexpected SEQNONEXT Error When Using Sequences..78
4.2.14 Sequence Does Not Increase When Used in SELECT ... INTO...78
4.2.15 AUTOMATIC Columns Can Now Reference Other Columns..79
4.2.16 SET NO EXECUTE Permits More SHOW and SET Statements..79
4.2.17 CAST Function Enhanced for Single Field INTERVAL Types..80
4.2.18 Unexpected INVALID_BLR Error During CREATE MODULE..80
4.2.19 Unexpected DEFVALINC Error When Using ALTER DOMAIN..81
4.2.20 Unexpected UNRES_REL Error When DEFAULT Value References Table...........................82
4.2.21 Restricted Range Index Not Detecting Out−of−Range Values..82
4.2.22 Unexpected NODBKDRVTBL Error When Fetching DBKEY From a Table..........................83
4.2.23 Function Reference Causes Exception..83
4.2.24 SQL Precompiler Bugchecks on ALTER...84
4.2.25 Bugcheck at RDMS$$COMPILE_FOR_IF for Aggregate Queries...85
4.2.26 Unexpected INVALID_BLR When Using Variable CHECK Clause..85
4.2.27 Unexpected OBSOLETE_METADA When Accessing Older Rdb Version.............................86
4.2.28 IMPORT Did Not Create Objects with Function References...86

Oracle® Rdb for OpenVMS

iii

Table of Contents
4.2 SQL Errors Fixed

4.2.29 Unexpected Table References From FOR Cursor Query...88
4.2.30 Additional Warnings Generated for ALTER INDEX..90
4.2.31 ALTER INDEX Would Report Unexpected OBSOLETE_METADA Error............................91
4.2.32 SELECT DISTINCT Returns Incorrect Value for NEXTVAL..91
4.2.33 Unexpected Trailing Character in SMALLINT Display..91
4.2.34 DEFAULT Value With Subselect Not Evaluated Correctly..92
4.2.35 DROP SEQUENCE Bugchecks in Routine AIJ$JOURNAL...93
4.2.36 DECLARE TRANSACTION Causes Memory Leak...93
4.2.37 Restrictions Lifted for DROP and ALTER TABLE for Temporary Tables...............................94
4.2.38 Object Dependencies Not Tracked for Domains or Complex DEFAULT Clauses....................94
4.2.39 SET LINE LENGTH Changed Upper Limit..95
4.2.40 DROP SEQUENCE Not Synchronized With Other Sessions..95
4.2.41 Compiled Applications May Fail With SQLCODE −304..95

4.3 RDO and RDML Errors Fixed..97
4.3.1 RDO SHOW FIELD Would Bugcheck on SQL Created Definition..97
4.3.2 RDML/PASCAL Shareable Link/DEBUG SHRSYMFND Error...97

4.4 Oracle RMU Errors Fixed...99
4.4.1 RMU/CONVERT Writes Incorrect Metadata..99
4.4.2 RMU/BACKUP to Tape Can Hang on a Quit Response to a Prompt..102
4.4.3 RMU/BACKUP to Tape Can Hang When Terminating on Fatal Errors....................................102
4.4.4 Unexpected COSI−F−TRU Error From RMU/EXTRACT..103
4.4.5 RMU/LOAD Returned Error When Interchange File Contained No Rows...............................103
4.4.6 RMU/RECOVER Exit Status Does Not Indicate That a Recovery Failed.................................103
4.4.7 New Multithreaded Backup to Disk, Size Algorithm...104
4.4.8 Bugcheck at AIJUTL$FORMAT_ARBS When Performing RMU/BACKUP/AFTER............105
4.4.9 Thread Assignment and Storage Area Statistics Messages Were Not Being Displayed With
 RMU/BACKUP/LOG...105
4.4.10 Cannot Resolve 2PC Transaction After RMU/RECOVER..107
4.4.11 RMU/RESTORE /CDD Failed to Integrate Root File into CDD...109
4.4.12 RMU/BACKUP Verifies Area File Belongs to Root...109
4.4.13 RMU Extract Not Processing DEFAULT Correctly..110
4.4.14 Unexpected BLRINV Error When Using RMU/EXTRACT...111
4.4.15 RMU/BACKUP/AFTER/NOQUIET Could Bugcheck..111
4.4.16 RMU/RECOVER/AREA Increments the Active AIJ Sequence Number................................111
4.4.17 RMU/LOAD/FIELDS With Empty Options File...111
4.4.18 BTRLEACAR Warning Raised by RMU/VERIFY/INDEX..112
4.4.19 RMU UNLOAD Incorrectly Using DBKEY SCOPE IS ATTACH..112
4.4.20 RMU Extract of Trigger Fails With BLRINV Error..113
4.4.21 RMU Extract Could Generate a Bugcheck When Extracting Views.......................................113
4.4.22 RMU BACKUP/AFTER_JOURNAL Creates Empty Files...114

4.5 LogMiner Errors Fixed..115
4.5.1 RMU/UNLOAD AFTER_JOURNAL AIJ Backup and Restart Information............................115
4.5.2 Log Qualifier Default for RMU /SET LOGMINER...115
4.5.3 RMU/UNLOAD AFTER_JOURNAL Exception in AIJEXT$FINISH.....................................115

Oracle® Rdb for OpenVMS

iv

Table of Contents
4.6 Row Cache Errors Fixed..116

4.6.1 Shared Memory Improvements for Galaxy Environments...116
4.6.2 Record Cache VM Problem..116
4.6.3 Row Cache Performance Improvement When ROW REPLACEMENT IS DISABLED..........116
4.6.4 Log Qualifier Default for RMU /SET ROW_CACHE...116

4.7 RMU Show Statistics Errors Fixed...118
4.7.1 Config Menu of Transaction Analysis Screen in RMU SHOW STATISTICS Modified to
 Display Transaction Summary..118
4.7.2 RMU Show Statistics Does Not Update Counters With /Time=−n..118
4.7.3 Commit Queue Algorithms are no Longer Used..118
4.7.4 RMU Show Statistics/Cluster Not Generating OPCOM Messages Consistently.......................119
4.7.5 Stall Message Descriptions Inconsistent...119
4.7.6 Ability to Invoke a Procedure From RMU/SHOW STATISTICS When a Stall Exceeds
 ALARM Seconds..119
4.7.7 RMU SHOW STATISTICS Device Information Screen Enhanced..120

4.8 Hot Standby Errors Fixed..121
4.8.1 LRS Bugchecks at KUTREC$DO_C_AIJBUF + 00001128...121

Chapter 5Software Errors Fixed in Oracle Rdb Release 7.1.0.3..122

5.1 Software Errors Fixed That Apply to All Interfaces...123
5.1.1 Query With Same Column in Two Clauses Returns Wrong Results..123
5.1.2 GROUP BY Query Followed by CASE With EXISTS Clause Returns Wrong Results...........125
5.1.3 ORDER BY Query on a BIGINT or INT Column Returns Wrong Order.................................126
5.1.4 OR Clause With Constant Predicate Returns Wrong Results...127
5.1.5 SELECT COUNT(*) Might Bugcheck Under Certain Dialects of SQL....................................128
5.1.6 Getting Null Values Instead of Actual Values..128
5.1.7 Another OR With Two Constant Predicates Returns Wrong Results...129
5.1.8 Another Query With Same Column in Two Clauses Returns Wrong Results...........................130

5.2 SQL Errors Fixed...132
5.2.1 Unexpected TRANSACTION Debug Output for Compound Statements.................................132

5.3 Oracle RMU Errors Fixed...133
5.3.1 RMU /CONVERT From V7.1 to V7.1 Did Not Preserve Client Sequences.............................133
5.3.2 RMU/COPY and RMU/MOVE Did Not Preserve Database Client Sequences.........................133

Chapter 6Software Errors Fixed in Oracle Rdb Release 7.1.0.2..135

6.1 Software Errors Fixed That Apply to All Interfaces...136
6.1.1 Zero Index Prefix Cardinality After Create Index..136
6.1.2 RDB−E−ARITH_EXCEPT Error From the Rdb Optimizer..137
6.1.3 Page Locking Problems in Release 7.1.0 and Release 7.1.0.1..138
6.1.4 Storage Area Default Size Increase..138
6.1.5 Recovery Process Caused Excessive Snapshot File Growth..138
6.1.6 Dynamic Optimization Estimation Incorrect for Ranked Indices...139

Oracle® Rdb for OpenVMS

v

Table of Contents
6.1 Software Errors Fixed That Apply to All Interfaces

6.1.7 Bugchecks Truncating Table in Mixed−Format Area with Row Caches...................................140
6.1.8 Fast Commit Checkpoints Do Not Always Advance...140
6.1.9 Monitor "Home" Directory...142
6.1.10 Bugcheck When Using Persona With SQL/Services..142
6.1.11 Query With Join Predicates on Leading Segments and Equality Filters Returns Wrong
 Results...143
6.1.12 Query With Transitive Join Predicates and Non−equality Filter Bugchecks...........................145
6.1.13 Query With OR Predicates, Including Two Similar IS NULL Clauses, Returns Wrong
 Results...146
6.1.14 Query Slows Down Using Full Index Scan [0:0]...148
6.1.15 Poor Choice of Indexes by Dynamic Optimizer...149
6.1.16 UNION Query With Constant Column Returns Wrong Results..150
6.1.17 Query With CAST Function Using Ranked Index Signals Exception Error............................152
6.1.18 External Functions Cannot Init, Reason 22..153
6.1.19 Bugchecks at PSII2SCANSTARTBBCSCAN...153
6.1.20 Cursor on Ranked Index Returned too Many Records...153
6.1.21 Changed Default Behavior for Bitmapped Scan Optimization...154
6.1.22 Bugcheck (ACCVIO) On Simple Select Statement..154
6.1.23 Privileged User Bugcheck (ACCVIO)..154
6.1.24 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 00000594..155
6.1.25 Unresolved 2PC Transactions Rolled Back by RMU/RECOVER...155

6.2 SQL Errors Fixed...157
6.2.1 Queries Ending in Reserved Words Fail to Execute in Dynamic SQL......................................157
6.2.2 SQL$MOD Compiler Does Not Recognize G_FLOAT with COBOL......................................157
6.2.3 Unexpected UNSDTPCVT Error Reported for NULL in UNION Statement...........................158
6.2.4 Precompiled SQL Does Not Recognize a C Function With a Struct Return Type.....................159
6.2.5 CREATE INDEX Placing Keys in Wrong Partition..160
6.2.6 ALTER INDEX ... TRUNCATE PARTITION Results in Bad Query Results..........................160
6.2.7 ALTER INDEX ... BUILD ALL PARTITIONS Not Writing Back SORTED Index Root
 Dbkeys..161
6.2.8 IMPORT Fails With INVIDXATTR Error for Hashed Indexes..162
6.2.9 DDL Statements Generated Unexpected Runtime Errors..162
6.2.10 INSERT Cursor on a Derived Table Would Bugcheck..163
6.2.11 CREATE TABLE Generates WISH_LIST for NULL Clause...163
6.2.12 Use of Synonyms Resulted in an Incorrect Query of System Tables.......................................164
6.2.13 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK..164
6.2.14 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK..165
6.2.15 Multistatement Procedures Used with Connections Resulted in
 %RDB−E−OBSOLETE_METADA Error Message..166
6.2.16 Privileges Not Honored For SET TRANSACTION...166

6.3 Oracle RMU Errors Fixed...167
6.3.1 RMU Fails to Perform OPTIMIZER_STATISTICS Actions on Some Databases....................167
6.3.2 RMU/CONVERT Fails to Correctly Define the RDB$WORKLOAD Table............................167
6.3.3 RMU Tape Density Problems Starting With OpenVMS V7.2−1...168
6.3.4 RMU/VERIFY/ROOT Incorrectly Reports RMU−E−BADAIJPN and/or

Oracle® Rdb for OpenVMS

vi

Table of Contents
6.3 Oracle RMU Errors Fixed

 RMU−E−AIJNOTFND..169
6.3.5 RMU/CONVERT Problem With Database Wide Default Collating Sequence.........................169
6.3.6 RMU/BACKUP to Tape Could Hang and Not Finish..170
6.3.7 RMU/BACKUP or RESTORE Bugcheck on Prompt to Mount a Tape Volume.......................170
6.3.8 RMU/BACKUP Prompt to Initialize Tape Label Created Incorrect Label................................170
6.3.9 RMU/RECLAIM Returns ACCVIO and Bugchecks at RMU_CLEANUP + 00000100..........171
6.3.10 RMU/VERIFY/CONSTRAINT Now Uses Warning for CONSTFAIL Message...................171
6.3.11 RMU Prompt to Operator Console Ignored Correct Responses...172
6.3.12 RMU Incremental Backup and Restore Could Cause Truncated Table Rows to Reappear.....172
6.3.13 Deleted Rows Reappear After RMU/REPAIR...173
6.3.14 RMU/EXTRACT Incorrectly Extracts Index STORE Clause When Using
 GROUP_TABLE Option..173
6.3.15 RMU/CONVERT/NOCOMMIT to V71 Lock Conflict Within Default Storage Area............174
6.3.16 RMU/COLLECT OPTIMIZER_STATISTICS Fails When Temporary Tables in
 Database..174
6.3.17 RMU/BACKUP and RESTORE RMU−I−RESUME Message Gave Incorrect Volume
 Number...175
6.3.18 RMU/RESTORE Access Violation on Ready Volume Prompt to Operator Console..............175
6.3.19 RMU/CONVERT to V71 Errors..176

6.3.19.1 RMU/CONVERT to V71 Changed the Value of Some Existing System Table
 Fields..176
6.3.19.2 RMU/CONVERT to V71 Truncated the RDB$PARAMETER_SOURCE
 Value in RDB$PARAMETERS..177
6.3.19.3 RMU/CONVERT to V71 Gave Incorrect Values to Some Fields in
 RDB$CONSTRAINTS..177
6.3.19.4 SHOW SEQUENCE Displays Strange Value for NEXT SEQUENCE VALUE....177

6.4 Row Cache Errors Fixed..179
6.4.1 Bugchecks in PIOGB$PURGE_BUFFER After Node Failure When Row Cache in Use.........179

6.5 RMU Show Statistics Errors Fixed...180
6.5.1 RMU/SHOW STATISTICS Does Not Honor CHECKPOINT_SORT.....................................180
6.5.2 RMU/SHOW STATISTICS CHECKPOINT_ALARM Does Not Give Out OPCOMs............180
6.5.3 Possible RMU Bugcheck or Failure to Notify Triggering of User Defined Events...................180
6.5.4 AUTO_RECONNECT Variable Value is not Honored When Imported From a
 RMU/SHOW STATISTICS Configuration File...180
6.5.5 Some RMU/SHOW STATISTICS Counters Can Be Used To Define Events In Interactive
 Mode But Not In Batch Mode..181
6.5.6 Stream ID Format is Different in Different Places...181
6.5.7 RMU/SHOW STATISTICS Online Analysis Configuration Options Do Not Work
 Properly...181
6.5.8 Missing "U" for Utility Jobs in RMU/SHOW STATISTICS Displays......................................181
6.5.9 RMU/SHOW STATISTICS Mixes Up Count Labels..181
6.5.10 Errors in Saved RMU/SHOW STATISTICS Configuration File...182
6.5.11 RMU/SHOW STATISTICS Shows Incorrect Area Sizes..182
6.5.12 RMU/SHOW STATISTICS Multi−Page Report File..182
6.5.13 RMU/SHOW STATISTICS Triggers Invoked From User Defined Events at Times Other

Oracle® Rdb for OpenVMS

vii

Table of Contents
6.5 RMU Show Statistics Errors Fixed

 Than the Refresh Intervals..182
6.5.14 RMU/SHOW STATISTICS Row Cache Information May Not Display the Information of
 the Cache Selected..183
6.5.15 Inconsistency in the Hot Standby Statistics Screen of RMU/SHOW STATISTICS................183

6.6 Hot Standby Errors Fixed..184
6.6.1 7.1.0.1 Process Hangs During AIJ Switchover...184
6.6.2 Could Not Use TCP/IP As Hot Standby Network Transport...184

Chapter 7Software Errors Fixed in Oracle Rdb Release 7.1.0.1..185

7.1 Software Errors Fixed That Apply to All Interfaces...186
7.1.1 Excessive Disk I/O for DROP TABLE and TRUNCATE TABLE...186
7.1.2 LIST Storage Map Not Updated Upon ALTER or DROP TABLE...186
7.1.3 ARBs Exhausted...186
7.1.4 CLEAN BUFFER COUNT Parameter Not Obeyed...187
7.1.5 DETECTED ASYNCHRONOUS PREFETCH THRESHOLD Not Obeyed............................187
7.1.6 Page Locks Not Demoted at End of Transaction When FAST COMMIT Enabled...................187
7.1.7 Bitmapped Scan Causes Bugcheck on Transaction Termination...188
7.1.8 Problems With Column Outlines..188
7.1.9 Count Scan Optimization Incorrectly Returning Count of 0..189
7.1.10 Disabling AIJ When Row Cache Recovery Required..190
7.1.11 Bitmapped Scan Problem With Large Indexes...190
7.1.12 Query With Range List OR Predicates Returns Wrong Results...191
7.1.13 Database Corruption Using Cluster With Galaxy and Non−Galaxy Nodes.............................192
7.1.14 Performance Problems when RDM$BIND_SNAP_QUIET_POINT Defined to 0.................193
7.1.15 Workload Ignored When Loaded with RMU/INSERT OPTIMIZER_STATISTICS..............193
7.1.16 Descending Sort Not Producing Correct Ordering for BIGINT and DATE Columns.............194
7.1.17 Bitmapped Scan Incorrectly Chosen by Optimizer..194
7.1.18 Cannot Connect With Remote Access When Using a Logical...196
7.1.19 Query Joining Derived Tables of Union Legs With Empty Tables Returns Wrong Results...196
7.1.20 Left Outer Join Query With OR Predicate Returns Wrong Results...198
7.1.21 Query Using Match Strategy With DISTINCT Function Returns Wrong Results...................200
7.1.22 GROUP BY Query With SUM Aggregate Returns Wrong Results...202
7.1.23 ROLLBACK Hangs Under DECdtm When Called From an ACMS CANCEL Procedure.....204
7.1.24 COMPUTED BY Columns Now Automatically Reserve Referenced Tables.........................204

7.2 SQL Errors Fixed...206
7.2.1 Command Line Recall Expanded to 255 Lines..206
7.2.2 New Minimum Value for the INTERVAL Leading Precision...206
7.2.3 Incorrect Processing of CASE Expression...206
7.2.4 ALTER TABLE Not Dropping NOT NULL Constraints When NULL Clause Used...............207
7.2.5 Some Constraint Definitions Not Supported for AUTOMATIC Columns................................208
7.2.6 %RDB−E−NO_DIST_BATCH_U Error When Executing SET TRANSACTION..................209
7.2.7 Select With Identical "not in" Clauses..209
7.2.8 Keyword Matching Now Reported by Interactive SQL...209
7.2.9 CREATE MODULE Bugchecks When a Subselect is Used as a Parameter DEFAULT..........210

Oracle® Rdb for OpenVMS

viii

Table of Contents
7.2 SQL Errors Fixed

7.2.10 Obsolete Metadata Errors When Using Rdb SQL V7.1 to Access Oracle Rdb V7.0
 Databases..210
7.2.11 SQL$PRE and SQL$MOD Performance Improvements...211
7.2.12 Incompatible Character Sets Not Detected by SQL Interface..211
7.2.13 SQLMOD Fails to Set Default Character Set Correctly...212

7.3 Oracle RMU Errors Fixed...214
7.3.1 RMU Extract Not Formatting View Column Expressions Correctly...214
7.3.2 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records Clarification................................214
7.3.3 RMU/DUMP/BACKUP Did Not Check the VMS BYPASS Privilege.....................................215
7.3.4 RMU/BACKUP Invalid Volume 1 Tape Label When Used With HP SLS...............................215
7.3.5 RMU/ANALYZE/CARDINALITY Fails on Databases With Local Temporary Tables..........216
7.3.6 File Name Not Displayed By RMU /RESTORE for Extend Failure..217
7.3.7 RMU/SHOW STATISTICS Allowed Suspend of Disabled ABS..217
7.3.8 RMU/COPY/BLOCKS_PER_PAGE Can Corrupt Copied Database Uniform Areas...............217
7.3.9 DROPped Storage Area and RMU /VERIFY in Cluster..218
7.3.10 RMU /VERIFY Checks All Storage Area Files First...219
7.3.11 RMU/SHOW STATISTICS Multi−Page Report File..219
7.3.12 Area Locks Demoted Statistic Not Always Correctly Incremented...219
7.3.13 RMU /BACKUP /ONLINE /NOQUIET_POINT Fails..219

7.4 LogMiner Errors Fixed..220
7.4.1 LogMiner Compresses Pre−Delete Record Content...220

7.5 Optimizer Problems Fixed in Oracle Rdb Release 7.1.0...221
7.5.1 Query Having OR Compound Predicates With Subquery Returns Wrong Results...................221
7.5.2 Query Using OR/AND Predicates With EXISTS Clause Returns Wrong Results....................222
7.5.3 Query Using German Collating Sequence Returns Wrong Results..223
7.5.4 Left Outer Join Query Returns Wrong Results When ON Clause Evaluates to False...............224
7.5.5 Query With Two IN Clauses on Two Subqueries Returns Wrong Results................................225
7.5.6 Query Having Same SUBSTRINGs Within CASE Expression Returns Wrong Results...........226
7.5.7 Aggregate Query With Nested MIN Function Returns Wrong Results.....................................227
7.5.8 Query with UNION Subselect Returns Wrong Results..228
7.5.9 Query with CONCATENATE in BETWEEN Clause Returns Wrong Results.........................230
7.5.10 ORDER BY Query With GROUP BY on Two Joined Derived Tables Returns Wrong
 Results...231
7.5.11 Left Outer Join Query With CONCATENATE Returns Wrong Results.................................232
7.5.12 Query With UNION in German Collating Sequence Returns Wrong Results.........................233
7.5.13 Query With OR Predicate on Aggregate Column Returns Wrong Results..............................234
7.5.14 Query With Equality Predicate Included in IN Clause Returns Wrong Results.......................237
7.5.15 Match Strategy on Columns of Different Size, Using Collating Sequence, Returns Wrong
 Results...238
7.5.16 Left Outer Join Query With CAST Function on USING Column Bugchecks.........................239
7.5.17 Query Using Constant Values in OR Predicates Returns Wrong Results................................240

Oracle® Rdb for OpenVMS

ix

Table of Contents
Chapter 8Enhancements..243

8.1 Enhancements Provided in Oracle Rdb Release 7.1.1...244
8.1.1 Scan Intrusion Security Now Supported...244

8.2 Enhancements Provided in Oracle Rdb Release 7.1.0.4..245
8.2.1 RMU Unload After_Journal Wildcard Table Names...245
8.2.2 Enhancements to RMU Extract..245
8.2.3 RMU /SET ROW_CACHE /ALTER Command..246
8.2.4 New Keyword SCREEN_NAME for RMU/SHOW STATISTICS/OPTIONS.........................247
8.2.5 New RMU /SET SHARED_MEMORY /TYPE Command...248
8.2.6 Zoom Option for "Process Analysis" Screen in RMU/SHOW STATISTICS...........................249
8.2.7 Statistics Collection Performance Improvement for AlphaServer GS Systems.........................249
8.2.8 New PRAGMA Clause Added to SQL Compound Statements...250
8.2.9 New DECLARE Routine Statement...251
8.2.10 New AUTO_INDEX Option Added for SET FLAGS...255

8.3 Enhancements Provided in Oracle Rdb Release 7.1.0.2..257
8.3.1 Buffer Objects Enhancements...257
8.3.2 RMU Support Added for New OpenVMS Tape Density Values...258
8.3.3 Ability to Compress RMU/SHOW STATISTICS Output File Added.......................................261
8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL.......................262

8.3.4.1 SQL Module Language (SQL$MOD)..262
8.3.4.2 Precompiled SQL (SQL$PRE)...267
8.3.4.3 Use of the Dynamic Descriptor Areas (SQLDA and SQLDA2)................................270
8.3.4.4 Use of Common Data Dictionary (CDD)...270

8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW STATISTICS User Defined
 Events..271
8.3.6 New ALTER OUTLINE Statement..271
8.3.7 DROP Statement Now Includes IF EXISTS Clause...275
8.3.8 New EXCEPT, INTERSECT and MINUS Operators..276
8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb..281
8.3.10 Enhanced Bitmapped Scans..285
8.3.11 Extended Record Compression...286
8.3.12 RMU /UNLOAD /AFTER_JOURNAL Wildcard Table Names...288
8.3.13 New NAME Clause for SET/DECLARE TRANSACTION Statement...................................288
8.3.14 New Built In Functions for Oracle RDBMS Compatibility...289
8.3.15 New AND CHAIN Syntax Supported for COMMIT and ROLLBACK..................................290
8.3.16 New Options for SET FLAGS Statement...292

8.4 Enhancements Provided in Oracle Rdb Release 7.1.0.1..294
8.4.1 SQL Now Supports a Native ABS Function..294
8.4.2 New DUMP Output Format for LogMiner...295
8.4.3 Data and SPAM Prefetch Screens Added to RMU/SHOW STATISTICS.................................296
8.4.4 RMU/SHOW STATISTICS Stall Log Lock Information Optional...297
8.4.5 New Option for the GET DIAGNOSTICS Statement..298
8.4.6 Alternate Outline Ids...298
8.4.7 Field Widths Wider on Row Cache Overview Display..301

Oracle® Rdb for OpenVMS

x

Table of Contents
8.4 Enhancements Provided in Oracle Rdb Release 7.1.0.1

8.4.8 FOR Counted Loop Enhancements..301
8.4.9 Enhancements to SET DISPLAY Statement for Interactive SQL..304
8.4.10 New BITSTRING Built In Function..306
8.4.11 New SET PAGE LENGTH Command for Interactive SQL..307
8.4.12 New ALTER CONSTRAINT Statement..307
8.4.13 DECLARE Variable Now Supports CHECK Constraint...310
8.4.14 RMU/SHOW STATISTICS Active User Stall Messages Sorted by Process ID.....................311
8.4.15 RMU /REPAIR /INITIALIZE ONLY_LAREA_TYPE Keyword...311
8.4.16 RMU/SHOW STATISTICS Cluster Data Collection Performance Enhancement..................312
8.4.17 RMU Extract has Enhanced Extract of Conditional Expressions...312

8.5 Enhancements Provided in Oracle Rdb 7.0 Releases..314
8.5.1 Enhancements to Range Queries on SORTED Indexes...314

Chapter 9Oracle Rdb Continuous LogMiner..317

9.1 RMU Unload After_Journal Command...318
Format..318
DESCRIPTION...318
COMMAND PARAMETERS...320

root−file−spec...320
aij−file−name..320

COMMAND QUALIFIERS..320
Before=date−time...321
Continuous..321
NoContinuous...321
Extend_Size=integer...322
Format=options...322
Include=Action=include−type..325
IO_Buffers=integer...326
Log..326
Nolog..326
Options=options−list...326
Order_AIJ_Files..327
NoOrder_AIJ_Files...327
Output=file−spec..328
Parameter=character−strings..328
Restart=restart−point..328
Restore_Metadata=file−spec..329
Save_Metadata=file−spec...329
Select=selection−type...329
Since=date−time...329
Sort_Workfiles=integer..330
Statistics_Interval=integer..330
Table=(Name=table−name, table−options)..330
Trace...331
NoTrace..331

Oracle® Rdb for OpenVMS

xi

Table of Contents
9.1 RMU Unload After_Journal Command

USAGE NOTES..331
USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE...334
EXAMPLES..334

9.2 RMU Set Logminer Command..344
Format..344
DESCRIPTION...344
COMMAND PARAMETERS...344

root−file−spec...344
COMMAND QUALIFIERS..344

Continuous..344
NoContinuous...344
Disable..345
Enable...345
Log..345
Nolog..345

USAGE NOTES..345
EXAMPLES..345

9.3 RMU Dump /Header Command Enhanced...346

9.4 RMU Show Statistics Utility Enhanced..347

9.5 AERCP Format...348

Chapter 10Documentation Corrections, Additions and Changes..349

10.1 Documentation Corrections...350
10.1.1 Explanation of SQL$INT in a SQL Multiversion Environment and How to Redefine
 SQL$INT..350
10.1.2 Documentation Omitted Several Reserved Words...351
10.1.3 Additional Usage Notes for ALTER INDEX...351
10.1.4 Using Databases from Releases Earlier Than V6.0..352
10.1.5 Clarification of PREPARE Statement Behavior...352
10.1.6 CREATE OUTLINE Supports Trigger, Constraint, Column and View Outlines....................353
10.1.7 New RMU/BACKUP Storage Area Assignment With Thread Pools......................................355
10.1.8 DROP INDEX Now an Online Table Operation..356
10.1.9 AUTOMATIC Clause Not Supported in ALTER TABLE ... ALTER COLUMN..................357
10.1.10 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter.............357
10.1.11 New Request Options for RDO, RDBPRE and RDB$INTERPRET.....................................357
10.1.12 Missing Descriptions of RDB$FLAGS from HELP File...360

10.2 Address and Phone Number Correction for Documentation...362

10.3 Online Document Format and Ordering Information ..363

Oracle® Rdb for OpenVMS

xii

Table of Contents
10.4 New and Changed Features in Oracle Rdb Release 7.1..364

10.4.1 PERSONA is Supported in Oracle SQL/Services..364
10.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be Delimited Identifiers...........................364
10.4.3 Only=select_list Qualifier for the RMU Dump After_Journal Command...............................364

10.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases...............................366
10.5.1 Restrictions Lifted on After−Image Journal Files..366
10.5.2 Changes to RMU Replicate After_Journal ... Buffer Command..366
10.5.3 Unnecessary Command in the Hot Standby Documentation..367
10.5.4 Change in the Way RDMAIJ Server is Set Up in UCX...367
10.5.5 CREATE INDEX Operation Supported for Hot Standby..368

10.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide...369
10.6.1 Suggestion to Increase GH_RSRVPGCNT Removed..369
10.6.2 Prerequisite Software..369
10.6.3 Defining the RDBSERVER Logical Name..369

10.7 Guide to Database Design and Definition...371
10.7.1 Lock Timeout Interval Logical Incorrect..371
10.7.2 Example 4−13 and Example 4−14 Are Incorrect...371

10.8 Oracle Rdb7 SQL Reference Manual...372
10.8.1 Clarification of the DDLDONOTMIX Error Message...372
10.8.2 Node Specification Allowed on Root FILENAME Clauses...373
10.8.3 Incorrect Syntax Shown for Routine−Clause of the CREATE MODULE Statement.............373
10.8.4 Omitted SET Statements...373

10.8.4.1 QUIET COMMIT...373
10.8.4.2 COMPOUND TRANSACTIONS..374

10.8.5 Size Limit for Indexes with Keys Using Collating Sequences...375
10.8.6 Clarification of SET FLAGS Option DATABASE_PARAMETERS.....................................376
10.8.7 Incorrect Syntax for CREATE STORAGE MAP Statement..376
10.8.8 Use of SQL_SQLCA Include File Intended for Host Language File.......................................378
10.8.9 Missing Information on Temporary Tables..378

10.9 Oracle RMU Reference Manual, Release 7.0...380
10.9.1 RMU Unload After_Journal Null Bit Vector Clarification..380
10.9.2 New Transaction_Mode Qualifier for Oracle RMU Commands..382
10.9.3 RMU Server After_Journal Stop Command...384
10.9.4 Incomplete Description of Protection Qualifier for RMU Backup After_Journal
 Command..384
10.9.5 RMU Extract Command Options Qualifier..384
10.9.6 RDM$SNAP_QUIET_POINT Logical is Incorrect...384
10.9.7 Using Delta Time with RMU Show Statistics Command..384

10.10 Oracle Rdb7 Guide to Database Performance and Tuning..386
10.10.1 Dynamic OR Optimization Formats...386
10.10.2 Oracle Rdb Logical Names...386
10.10.3 Waiting for Client Lock Message...386

Oracle® Rdb for OpenVMS

xiii

Table of Contents
10.10 Oracle Rdb7 Guide to Database Performance and Tuning

10.10.4 RDMS$TTB_HASH_SIZE Logical Name...388
10.10.5 Error in Updating and Retrieving a Row by Dbkey Example 3−22.......................................388
10.10.6 Error in Calculation of Sorted Index in Example 3−46..389
10.10.7 Documentation Error in Section C.7...390
10.10.8 Missing Tables Descriptions for the RDBEXPERT Collection Class...................................390
10.10.9 Missing Columns Descriptions for Tables in the Formatted Database...................................391
10.10.10 A Way to Find the Transaction Type of a Particular Transaction Within the Trace
 Database..398
10.10.11 Using Oracle TRACE Collected Data..398
10.10.12 AIP Length Problems in Indexes that Allow Duplicates..400
10.10.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification.....................................401

10.11 Oracle Rdb7 Guide to SQL Programming...403
10.11.1 Location of Host Source File Generated by the SQL Precompiler...403
10.11.2 Remote User Authentication...404
10.11.3 Additional Information About Detached Processes..404

10.12 Guide to Using Oracle SQL/Services Client APIs...406

10.13 Updates to System Relations..407
10.13.1 Clarification on Updates to the RDB$LAST_ALTERED Column for the
 RDB$DATABASE System Relation..407
10.13.2 Missing Descriptions of RDB$FLAGS..407

10.14 Error Messages..410
10.14.1 Clarification of the DDLDONOTMIX Error Message...410

Chapter 11Known Problems and Restrictions...411

11.1 Known Problems and Restrictions in All Interfaces...412
11.1.1 Multi−Disk File RMU Backup and Restore Should Not Be Used...412
11.1.2 SYSTEM−F−INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or
 LARGE MEMORY IS ENABLED in Galaxy Environment...412
11.1.3 Oracle Rdb and OpenVMS ODS−5 Volumes..413
11.1.4 Optimization of Check Constraints...413
11.1.5 Using Databases from Releases Earlier Than V6.0..416
11.1.6 PAGE TRANSFER VIA MEMORY Disabled..416
11.1.7 Carryover Locks and NOWAIT Transaction Clarification..416
11.1.8 Unexpected Results Occur During Read−Only Transactions on a Hot Standby Database......416
11.1.9 IMPORT Unable to Import Some View Definitions..417
11.1.10 Both Application and Oracle Rdb Using SYS$HIBER..418
11.1.11 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL...419
11.1.12 Read−only Transactions Fetch AIP Pages Too Often..419
11.1.13 Row Cache Not Allowed While Hot Standby Replication is Active......................................420
11.1.14 Excessive Process Page Faults and other Performance Considerations During Oracle
 Rdb Sorts...420
11.1.15 Control of Sort Work Memory Allocation..421

Oracle® Rdb for OpenVMS

xiv

Table of Contents
11.1 Known Problems and Restrictions in All Interfaces

11.1.16 The Halloween Problem...422

11.2 SQL Known Problems and Restrictions...424
11.2.1 Unexpected CONVERT_ERROR Exception When Querying Partitioned Index....................424
11.2.2 Interchange File (RBR) Created by Oracle Rdb Release 7.1 Not Compatible With
 Previous Releases..424
11.2.3 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE
 When Attached by PATHNAME...425
11.2.4 Problem Exporting and Importing Sequences with ANSI−Style Databases............................425
11.2.5 System Relation Change for International Database Users..425
11.2.6 Single Statement CALL Does Not Support Truncated Parameter List or DEFAULT
 Keyword..426
11.2.7 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL
 Precompiler...426
11.2.8 Restriction for CREATE STORAGE MAP Statement on Table with Data.............................427
11.2.9 Multistatement or Stored Procedures May Cause Hangs...427
11.2.10 Use of Oracle Rdb from Shareable Images...428

11.3 Oracle RMU Known Problems and Restrictions...430
11.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been Disabled...430
11.3.2 RMU Convert Fails When Maximum Relation ID is Exceeded...430
11.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information....................431
11.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal Command............................432
11.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup......................................432
11.3.6 Default for RMU CRC Qualifier Changing in Future Release...433
11.3.7 RMU Backup Operations Should Use Only One Type of Tape Drive.....................................433
11.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors..434

11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier.............................436
11.4.1 Converting Single−File Databases..436
11.4.2 Row Caches and Exclusive Access...436
11.4.3 Exclusive Access Transactions May Deadlock with RCS Process..436
11.4.4 Strict Partitioning May Scan Extra Partitions...436
11.4.5 Restriction When Adding Storage Areas with Users Attached to Database............................437
11.4.6 Support for Single−File Databases to Be Dropped in a Future Release...................................437
11.4.7 Multiblock Page Writes May Require Restore Operation..438
11.4.8 Replication Option Copy Processes Do Not Process Database Pages Ahead of an
 Application..438

11.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier439
11.5.1 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area.....439
11.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE.....................................439
11.5.3 Different Methods of Limiting Returned Rows from Queries..440
11.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel
 Index Creation...441
11.5.5 Side Effect When Calling Stored Routines...442
11.5.6 Considerations When Using Holdable Cursors..443

Oracle® Rdb for OpenVMS

xv

Oracle® Rdb for OpenVMS

Oracle® Rdb for OpenVMS 1

Release Notes
Release 7.1.1

Release Notes 2

April 2003
Oracle Rdb Release Notes, Release 7.1.1 for OpenVMS

Copyright © 1984, 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these Programs,
no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the Programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227−19, Commercial Computer
Software − Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail−safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Rdb7, Oracle SQL/Services, Oracle7, Oracle Expert, and
Oracle Rally are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks
of their respective owners.

April 2003 3

Contents

Contents 4

Preface

Preface 5

Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.1.1. The notes describe changed and enhanced
features; upgrade and compatibility information; new and existing software problems and restrictions; and
software and documentation corrections.

Purpose of This Manual 6

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or use
Oracle Rdb Release 7.1.1.

Intended Audience 7

Document Structure
This manual consists of eleven chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.1.1.

Chapter 2 Describes software errors corrected in Oracle Rdb Release 7.1.1.

Chapter 3 Describes software errors corrected in Oracle Rdb Release 7.1.0.5.

Chapter 4 Describes software errors corrected in Oracle Rdb Release 7.1.0.4.

Chapter 5 Describes software errors corrected in Oracle Rdb Release 7.1.0.3.

Chapter 6 Describes software errors corrected in Oracle Rdb Release 7.1.0.2.

Chapter 7 Describes software errors corrected in Oracle Rdb Release 7.1.0.1.

Chapter 8 Describes enhancements introduced in Oracle Rdb Release 7.1.1.

Chapter 9 Oracle Rdb Continuous LogMiner Documentation

Chapter 10Provides information not currently available in the Oracle Rdb documentation set.

Chapter 11Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.1.1.

Document Structure 8

Chapter 1
Installing Oracle Rdb Release 7.1.1
This software update is installed using the standard OpenVMS Install Utility.

NOTE

All Oracle Rdb Release 7.1 kits are full kits. There is no requirement to install any prior
release of Oracle Rdb when installing new Rdb Release 7.1 kits.

Chapter 1 Installing Oracle Rdb Release 7.1.1 9

1.1 Alpha EV7 Processor Support Added
For this release of Oracle Rdb, the Alpha EV7 processor is the newest processor supported.

1.1 Alpha EV7 Processor Support Added 10

1.2 Oracle Rdb V7.1 Version Numbering
Enhancement
Previously, the Oracle Rdb version number was specified as 4 digits (for example, version "7.1.0.2"). Starting
with Oracle Rdb Release 7.1.1, an additional, fifth, digit has been added to the kit version number. This new
digit is intended to indicate an optimization level of the Rdb software. The use of this new digit is to indicate a
"generic" kit (final digit of zero) for all Alpha processors or a "performance" kit that will run on a subset of
the supported platforms (final digit of 1). In the future, additional values may be specified to indicate other
performance or platform options.

For Oracle Rdb Release 7.1.1, the two kits are 7.1.1.0.0 (compiled for all Alpha processor types) and 7.1.1.0.1
(compiled for EV56 and later Alpha processors). These kits offer identical functionality and differ only in a
potential performance difference.

1.2 Oracle Rdb V7.1 Version Numbering Enhancement 11

1.3 Requirements
The following conditions must be met in order to install this software:

Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP71.COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown the Rdb 7.1 monitor on all nodes in the cluster
before proceeding.

•

The installation requires approximately 280,000 blocks for OpenVMS Alpha systems.•
If you are running Hot Standby and you are upgrading from a version of Oracle Rdb 7.1 prior to 7.1.1,
you must install this kit on both the master and the standby systems prior to restarting Hot Standby.
This requirement is necessary due to changes to the message format used to transmit journal state
information from the master to the standby system.

•

1.3 Requirements 12

1.4 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure as in the following
examples.

To install the Oracle Rdb for OpenVMS Alpha kit that is compiled to run on all Alpha platforms:

@SYS$UPDATE:VMSINSTAL RDBV71100AM device−name OPTIONS N

To install the Oracle Rdb for OpenVMS Alpha kit that is performance targeted for Alpha EV56 and later
platforms:

@SYS$UPDATE:VMSINSTAL RDBV71101AM device−name OPTIONS N

device−name

Use the name of the device on which the media is mounted. If the device is a disk drive, you also need to
specify a directory. For example: DKA400:[RDB.KIT]

OPTIONS N

This parameter prints the release notes.

The full Oracle Rdb Release 7.1 Installation Guide is also available on MetaLink in Adobe Acrobat PDF
format:

Top Tech Docs\Oracle Rdb\Documentation\Rdb 7.1 Installation and Configuration
Guide

1.4 Invoking VMSINSTAL 13

1.5 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the
copy of Oracle Rdb installed will probably not be usable.

1.5 Stopping the Installation 14

1.6 After Installing Oracle Rdb
This update provides a new Oracle Rdb Oracle TRACE facility definition. Any Oracle TRACE selections that
reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition "RDBVMSV7.1−100" or "RDBVMSV7.1−101".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPC$FACILITY.TLB. To be able to collect Oracle Rdb event−data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.1−100 −
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

1.

Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

2.

Note that the process executing the INSERT DEFINITION command must use the version of Oracle Rdb that
matches the version used to create the Oracle TRACE administration database or the INSERT DEFINITION
command will fail.

1.6 After Installing Oracle Rdb 15

1.7 Oracle Rdb Release 7.1.1.0.1 Optimized for Alpha
EV56 (21164A Processor Chip) and Later Platforms
Oracle will be releasing Oracle Rdb 7.1 and later kits in parallel build streams − a "generic" kit that will run
on all certified and supported Alpha platforms as well as a "performance" kit that will run on a subset of the
supported platforms. The performance kit is intended for those customers with "newer" Alpha processor chips
who need higher levels of performance than are offered by the generic kits. The performance kits are
otherwise functionally identical to the generic kits.

Oracle will continue to release both types of kits for Oracle Rdb Release 7.1 as long as there is significant
customer interest in the generic kit.

For improved performance on current generation Alpha processors, Oracle Rdb Release 7.1.1.0.1 (also known
as V7.1−101) is compiled explicitly for Alpha EV56 and later systems. This version of Oracle Rdb requires a
system with a minimum Alpha processor chip of EV56 and a maximum processor chip of Alpha EV7 (known
as the Alpha 21364).

Oracle Rdb Release 7.1.1.0.1 is functionally equivalent to Oracle Rdb Release 7.1.1.0.0 and was built from
the same source code. The only difference is a potentially improved level of performance. Oracle Rdb Release
7.1.1.0.0 is certified on all supported Alpha processor types (up to and including the Alpha EV7 processor).

In Release 7.1.1.0.1, Oracle Rdb is explicitly compiled for EV56 and later Alpha processors such that the
generated instruction stream can utilize the byte/word extension (BWX) of the Alpha architecture.
Additionally, this kit is compiled with instruction tuning biased for performance of Alpha EV6 and later
systems that support quad−issue instruction scheduling.

Note that you should not install Release 7.1.1.0.1 of Oracle Rdb on Alpha EV4, EV45 or EV5 systems. These
processor types do not support the required byte/word extension (BWX) of the Alpha architecture. Also
ensure that all systems in a cluster sharing the system disk are using a minimum of the Alpha EV56 processor.

To easily determine the processor type of a running OpenVMS Alpha system, use the CLUE CONFIG
command of the OpenVMS System Dump Analyzer utility (accessed with the ANALYZE/SYSTEM
command). The "CPU TYPE" field indicates the processor type as demonstrated in the following example
from an HP AlphaServer GS140 6/525 system with an EV6 (21264) processor:

$ ANALYZE/SYSTEM
SDA> CLUE CONFIG
System Configuration:
 .
 .
 .
Per−CPU Slot Processor Information:
CPU ID 00 CPU State rc,pa,pp,cv,pv,pmv,pl
CPU Type EV6 Pass 2.3 (21264)
PAL Code 1.96−1 Halt PC 00000000.20000000
 .
 .
 .

1.7 Oracle Rdb Release 7.1.1.0.1 Optimized for Alpha EV56 (21164A Processor Chip) and Later Platforms16

1.8 Maximum OpenVMS Version Check Added
As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has been added to the product.
Oracle Rdb has always had a minimum OpenVMS version requirement. With 7.0.1.5 and for all future Oracle
Rdb releases, we have expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve product quality.

OpenVMS Version 7.3−x is the maximum supported version of OpenVMS.

The check for the OpenVMS operating system version and supported hardware platforms is performed both at
installation time and at runtime. If either a non−certified version of OpenVMS or hardware platform is
detected during installation, the installation will abort. If a non−certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

1.8 Maximum OpenVMS Version Check Added 17

1.9 VMS$MEM_RESIDENT_USER Rights Identifier
Required
Oracle Rdb Version 7.1 introduced additional privilege enforcement for the database or row cache attributes
SHARED MEMORY IS SYSTEM and LARGE MEMORY IS ENABLED. If a database utilizes any of these
features, then the user account that opens the database must be granted the VMS$MEM_RESIDENT_USER
rights identifier. Also, a process attempting to change these attributes, to convert (with the RMU/CONVERT
command) or to restore (with the RMU/RESTORE command) a database with these attributes enabled must
also hold the right.

Oracle recommends that the RMU/OPEN command be used when utilizing these features.

1.9 VMS$MEM_RESIDENT_USER Rights Identifier Required 18

Chapter 2
Software Errors Fixed in Oracle Rdb Release 7.1.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.1.

Chapter 2 Software Errors Fixed in Oracle Rdb Release 7.1.1 19

2.1 Software Errors Fixed That Apply to All Interfaces

2.1.1 DBR Process Bugchecks In DBR$DO_C_AIJBUF During
Node−failure Recovery

Bug 2639041

In rare cases of specific combinations of database row erasure and space re−use prior to a node−failure
recovery condition, it was possible for a database recovery (RDMDBR) process to fail with an exception in
DBR$DO_C_AIJBUF. This failure case was due to the DBR not correctly being able to reclaim deleted line
index entries from a database page.

This problem has been corrected in Oracle Rdb Release 7.1.1. The DBR process now correctly detects that
there are no other transactions and reclaims the deleted line index entries.

2.1.2 2PC Transaction Rolled Back If Transaction Manager
Unavailable

When the following sequence of events occurred, Oracle Rdb would incorrectly rollback a distributed
(two−phase commit, or "2PC") transaction:

A 2PC transaction is started across multiple nodes1.
All participants in the transaction successfully "prepare"2.
Network link from one participant to the transaction manager node fails3.
The committing process that encountered the network error fails, triggering a database recovery
process (DBR)

4.

The DBR attempts to connect to the transaction manager and hangs waiting for the network link to be
restored

5.

The database is forced closed by some action such as an RMU/CLOSE slashABORT=DELPRC,
system crash, system reboot, etc.

6.

When another attempt is made to open the database, a DBR is again started to recover the failed
process

7.

The DBR rolls back the transaction without attempting to contact the transaction manager8.

The DBR should not rollback a transaction until it successfully contacts the transaction manager to determine
the final outcome of the transaction. This problem would only occur if multiple DBR invocations were made
to recover a 2PC transaction.

This problem has been corrected in Oracle Rdb Release 7.1.1. The DBR will now always contact the
transaction manager to determine the final state of a failed 2PC transaction.

2.1.3 New After Image Journal Format

This release of Oracle Rdb introduces a new After Image Journal (AIJ) record. This new record is needed to
address problems related to the journaling of sequence numbers. Sequences are a new feature introduced in
Release 7.1. See Section 2.1.5 for more information regarding the problems fixed.

2.1 Software Errors Fixed That Apply to All Interfaces 20

Any journal created by this release of Oracle Rdb is not compatible with older releases of Oracle Rdb,
regardless of whether or not the sequences feature is used. Attempts to apply journals created by this release,
or later releases, of Oracle Rdb, using an older release of Oracle Rdb, will fail with the following error:

$ RMU/RECOVER/NOLOG JOURNAL_1.AIJ
%RMU−F−BADAIJVER, after−image journal version is incompatible with the
runtime system

Attempts to extract changes from the journal using the Log Miner feature (RMU slashUNLOAD
/AFTER_JOURNAL) in older releases of Oracle Rdb will also fail with the same error.

Journals created by older 7.1 releases may be processed using this release of Oracle Rdb.

Note that this change requires that all systems involved in Hot Standby replication need to have Oracle Rdb
upgraded before replication may be resumed.

2.1.4 Sequence Numbers Repeat

Bugs 2325235, 2825017 and 2815783

When multiple sequences were created and used in a database, it was possible for sequence numbers to repeat.
That is, a sequence number could get incremented, and then later the value of the sequence could reflect its
value prior to being incremented.

This problem could occur when multiple processes were updating multiple sequences at the same time.
Incorrect locking of the sequences data structures allowed the possibility for updates to be lost or "buried."

This problem can be avoided by allowing only one process at a time to do NEXTVAL operations on
sequences.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.5 Recovered Database May Not Have Correct Sequences

Under some circumstances, it was possible for a database that had been restored and the journals recovered
with the RMU/RECOVER command to not have the correct sequence numbers when the recover operation
was complete.

The following example shows how a sequence update is lost when a database is restored from a backup and
recovered. After the database is recovered, the sequence number does not reflect the last value before the
database was deleted.

$ SQL
 CREATE DATABASE FILENAME 'SEQ';
 CREATE SEQUENCE S1 START WITH 1 CACHE 2;
 COMMIT;
 DISCONNECT ALL;
 ALTER DATABASE FILE SEQ JOURNAL ENABLED ADD JOURNAL SEQ FILENAME SEQ;
%RDMS−W−DOFULLBCK, full database backup should be done to ensure future recovery
 EXIT;
$ RMU/BACKUP/AFTER/NOLOG SEQ.RDB NLA0:SEQ
%RMU−W−DATACMIT, unjournaled changes made; database may not be recoverable

Oracle® Rdb for OpenVMS

2.1.4 Sequence Numbers Repeat 21

$ RMU/BACKUP/NOLOG SEQ.RDB SEQ.RBF
$ SQL
 ATTACH 'FILE SEQ';
 START TRANSACTION READ ONLY;
 SELECT S1.NEXTVAL FROM RDB$DATABASE;

 1
1 row selected
 SELECT S1.NEXTVAL FROM RDB$DATABASE;

 2
1 row selected
 SELECT S1.NEXTVAL FROM RDB$DATABASE;

 3
1 row selected
 COMMIT;
 EXIT;
$ DELETE SEQ.RDB;*,SEQ.SNP;*
$
$! The last sequence value returned was 3.
$! Now restore the database and recover it.
$! Note that the next sequence returned after
$! the restore and recover is 1.
$
$ RMU/RESTORE/NOCDD/NOAFTER/NORECOVER/NOLOG SEQ.RBF
$ RMU/RECOVER/ROOT=SEQ/NOLOG SEQ
%RMU−I−LOGRECDB, recovering database file DEV:[DIR]SEQ.RDB;1
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed
%RMU−W−NOTRANAPP, no transactions in this journal were applied
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−W−NOTRANAPP, no transactions in this journal were applied
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 0
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled
$ SQL
 ATTACH 'FILE SEQ';
 SELECT S1.NEXTVAL FROM RDB$DATABASE;

 1
1 row selected

This error could occur when the last sequence update (NEXTVAL) was issued under one of the following
circumstances:

Within a READ ONLY transaction•
Within a READ WRITE transaction that modified no rows•
Within a READ WRITE transaction that was rolled back•
Not within a transaction•

The problem did not occur when a READ WRITE transaction was committed. If any of the situations listed
above occurred without being followed by a committed READ WRITE transaction that increments the
sequence number, then it was possible for the NEXTVAL update to be lost when the database was restored
and recovered.

It is possible to minimize the chances of this occurring by occasionally having a READ WRITE transaction
increment the sequence and COMMIT.

Oracle® Rdb for OpenVMS

2.1.4 Sequence Numbers Repeat 22

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.6 Bugcheck When Reserving Sequence Slots at
RUJ$JOURNAL + 028C

Bug 2649569

When altering a database to reserve additional sequence "slots", it was possible to cause a bugcheck with a
footprint similar to the following:

Exception occurred at RUJ$JOURNAL + 0000028C
COSI−F−BUGCHECK, internal consistency failure
Saved PC KUTMOD$UPDATE_CLTSEQ + 00000AC4
Saved PC KUTMOD$MODIFY_DATABASE + 00002C4C

This bugcheck could happen when more than approximately 4094 sequences were defined in the database as
demonstrated in the following example:

$ sql create database filename seq create storage area rdb$system;
$ sql alter database filename seq reserve 3616 sequences;
$ n=0
$lp:
$ sql alter database filename seq reserve 32 sequences;
$ n = n + 1
$ if n .lt. 13 then goto lp

This problem has been corrected in Oracle Rdb Release 7.1.1. The sequence blocks are no longer written to
the recover−unit journal file. In addition, Oracle Rdb now correctly enforces exclusive database access while
reserving sequences.

2.1.7 Left Outer Query With OR Predicate Returns Wrong Result

Bugs 2845172, 2836144 and 1837522

The following left outer join query with an OR predicate, having an equality predicate of constant values on
the left side, and another equality predicate of a column and a constant value on the right side, returns wrong
results. It should find 274 rows but it only finds 1 row.

set flags 'strategy,detail';
select
 t1.home_area_cd,t1.home_ph_num, t1.bus_area_cd,t1.bus_ph_num
 from
 t1 left outer join t2 on t1.acct_num = t2.acct_num
 where
 (t1.home_area_cd=999) OR
 (t1.bus_area_cd=310 and t1.bus_ph_num=5355400) ;
Tables:
 0 = T1
 1 = T2
Conjunct: 0.HOME_AREA_CD = 999 <== Note1 : MISSING OR predicate
Conjunct: (0.BUS_AREA_CD = 310) AND (0.BUS_PH_NUM = 5355400)
Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 OR index retrieval

Oracle® Rdb for OpenVMS

2.1.6 Bugcheck When Reserving Sequence Slots at RUJ$JOURNAL + 028C 23

 Conjunct: 0.HOME_AREA_CD = 999
 Get Retrieval by index of relation 0:T1
 Index name T1_IDX1 [1:1]
 Keys: 0.HOME_AREA_CD = 999
 Conjunct: NOT (0.HOME_AREA_CD = 999) AND (0.BUS_AREA_CD = 310) AND (
 0.BUS_PH_NUM = 5355400)
 Get Retrieval by index of relation 0:T1
 Index name T1_IDX2 [2:2]
 Keys: (0.BUS_AREA_CD = 310) AND (0.BUS_PH_NUM = 5355400)
 Cross block entry 2
 Conjunct: 0.ACCT_NUM = 1.ACCT_NUM
 Get Retrieval sequentially of relation 1:T2
0 rows selected

Note1: Notice that the OR predicate is missing between the two conjuncts.

This problem is similar to the query in Bug 2836144 but the only difference is that this query uses static OR
retrieval strategy.

As a workaround, the query works if the left and right side of the OR predicate is swapped in this example
(however this does not work with the customer's original query where the OR predicate has an additional
equality predicate). See the following example.

select
 t1.home_area_cd,t1.home_ph_num, t1.bus_area_cd,t1.bus_ph_num
 from
 t1 left outer join t2 on t1.acct_num = t2.acct_num
 where
 (t1.home_area_cd=999 and t1.home_ph_num=999) or
 (t1.bus_area_cd=310 and t1.bus_ph_num=5355400);

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.8 Left Outer Query With OR Predicate Returns Wrong Result

Bugs 2836144 and 1837522

The following left outer join query with an OR predicate, having an equality predicate of constant values on
the left side, and another equality predicate of a column and a constant value on the right side, returns wrong
results. It should find 274 rows but it only finds 1 row.

set flags 'strategy,detail';
select count(*) from
 job_history as c1
 left outer join
 employees as c2 on (c1.employee_id = c2.employee_id)
 where 1=1 OR c1.job_code = 'JNTR';
Tables:
 0 = JOB_HISTORY
 1 = EMPLOYEES
Aggregate: 0:COUNT (*)
Conjunct: 0.JOB_CODE = 'JNTR'
Conjunct: 0.JOB_CODE = 'JNTR'
Match (Left Outer Join)
 Outer loop
 Conjunct: (1 = 1) OR (0.JOB_CODE = 'JNTR')

Oracle® Rdb for OpenVMS

2.1.8 Left Outer Query With OR Predicate Returns Wrong Result 24

 Get Retrieval by index of relation 0:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]

 1
1 row selected

This problem was partially fixed in Bug 1837522 where the equality contains one column and one constant.

As a workaround, the query works if the left and right side of the OR predicate is swapped. See the following
example.

select count(*) from
 job_history as c1
 left outer join
 employees as c2 on (c1.employee_id = c2.employee_id)
 where c1.job_code = 'JNTR' OR 1=1;
Tables:
 0 = JOB_HISTORY
 1 = EMPLOYEES
Aggregate: 0:COUNT (*)
Conjunct: 0.JOB_CODE = 'JNTR'
Conjunct: 0.JOB_CODE = 'JNTR'
Match (Left Outer Join)
 Outer loop
 Conjunct: (0.JOB_CODE = 'JNTR') OR (1 = 1)
 Get Retrieval by index of relation 0:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]

 274
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.9 GROUP BY Query With Match Strategy Returns Wrong
Result

Bug 2792009

The following GROUP BY query applying match strategy returns wrong results when the order of the
'GROUP BY' columns is the same as the index order but the non−leading segment is used as the match join
key.

SELECT * FROM T2;
 ST_1
 900005439004
 908000009082
2 rows selected

SHOW INDEX I1_T1;
Indexes on table T1

Oracle® Rdb for OpenVMS

2.1.9 GROUP BY Query With Match Strategy Returns Wrong Result 25

I1_T1 with column BT_2
 and column BT_1
 and column BT_4
 and column BT_3
 Duplicates are allowed
 Type is Sorted
 Compression is DISABLED

SELECT * FROM T1;
Tables:
 0 = T1
Index only retrieval of relation 0:T1
 Index name I1_T1 [0:0]
 BT_1 BT_2 BT_3 BT_4
 900005439004 111 CON XFRA
 913000009132 111 AKU XFRA
 900005439004 222 CON XFRA
 908000009082 666 KPN XETR
 908000009082 666 KPN XETR
5 rows selected

SELECT * FROM
 (SELECT * FROM T1
 GROUP BY BT_2, BT_1, BT_4, BT_3 ! same order as index I1_T1
) AS TMP
 WHERE EXISTS
 (SELECT 1 FROM T2
 WHERE TMP.BT_1=ST_1); ! non−leading segment "BT_1" used as match key
Tables:
 0 = T1
 1 = T2
Conjunct: <agg0> <> 0
Match
 Outer loop
 Merge of 1 entries
 Merge block entry 1
 Reduce: 0.BT_1, 0.BT_2, 0.BT_4, 0.BT_3 <== See Note 1
 Index only retrieval of relation 0:T1
 Index name I1_T1 [0:0]
 Inner loop
 Aggregate: 0:COUNT−ANY (<subselect>)
 Sort: 1.ST_1(a)
 Get Retrieval sequentially of relation 1:T2
 BT_1 BT_2 BT_3 BT_4
 900005439004 111 CON XFRA
1 row selected

But, the query works if the match join column 'BT_1' is placed at the front of the GROUP BY columns as the
leading segment, for example:

SELECT * FROM
 (SELECT * FROM T1
 GROUP BY BT_1, BT_2, BT_4, BT_3 ! BT_1 is placed as the leading segment
! GROUP BY BT_2, BT_1, BT_4, BT_3
) AS TMP
 WHERE EXISTS
 (SELECT 1 FROM T2
 WHERE TMP.BT_1=ST_1); ! leading segment "BT_1" used as match key
Tables:
 0 = T1

Oracle® Rdb for OpenVMS

2.1.9 GROUP BY Query With Match Strategy Returns Wrong Result 26

 1 = T2
Conjunct: <agg0> <> 0
Match
 Outer loop
 Merge of 1 entries
 Merge block entry 1
 Reduce: 0.BT_1, 0.BT_2, 0.BT_4, 0.BT_3
 Sort: 0.BT_1(a), 0.BT_2(a), 0.BT_4(a), 0.BT_3(a) <== Sort is applied
 Leaf#01 BgrOnly 0:T1 Card=200005
 BgrNdx1 I2_T1 [0:0] Fan=13
 Inner loop
 Aggregate: 0:COUNT−ANY (<subselect>)
 Sort: 1.ST_1(a)
 Get Retrieval sequentially of relation 1:T2
 BT_1 BT_2 BT_3 BT_4
 900005439004 111 CON XFRA
 900005439004 222 CON XFRA
 908000009082 666 KPN XETR
3 rows selected

As a workaround, the query works if an ORDER BY clause on the column BT_1 is added as follows:

SELECT * FROM
 (SELECT * FROM T1
 GROUP BY BT_2, BT_1, BT_4, BT_3
 ORDER BY BT_1) AS TMP
 WHERE EXISTS
 (SELECT 1 FROM T2 WHERE TMP.BT_1=ST_1);
Tables:
 0 = T1
 1 = T2
Conjunct: <agg0> <> 0
Match
 Outer loop
 Merge of 1 entries
 Merge block entry 1
 Reduce: 0.BT_1, 0.BT_2, 0.BT_4, 0.BT_3
 Sort: 0.BT_1(a), 0.BT_2(a), 0.BT_4(a), 0.BT_3(a)
 Leaf#01 BgrOnly 0:T1 Card=200005
 BgrNdx1 I2_T1 [0:0] Fan=13
 Inner loop
 Aggregate: 0:COUNT−ANY (<subselect>)
 Sort: 1.ST_1(a)
 Get Retrieval sequentially of relation 1:T2
 BT_1 BT_2 BT_3 BT_4
 900005439004 111 CON XFRA
 900005439004 222 CON XFRA
 908000009082 666 KPN XETR
3 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.10 Query Bugchecks When IN Clause Contains More Than 2
Dbkeys

Bug 2742592

Oracle® Rdb for OpenVMS

2.1.10 Query Bugchecks When IN Clause Contains More Than 2 Dbkeys 27

The following query bugchecks when the IN clause contains more than 2 dbkeys.

create table prova (i integer, c char(32));
insert into prova values (1,'one');
insert into prova values (2,'two');
insert into prova values (3,'three');

declare :dbk1 char(8);
declare :dbk2 char(8);
declare :dbk3 char(8);
declare c1 table cursor for select dbkey from prova;
open c1;
fetch c1 into :dbk1;
fetch c1 into :dbk2;
fetch c1 into :dbk3;
close c1;

 −− The following query works

select * from prova where dbkey in (:dbk1,:dbk2);
OR index retrieval
 Conjunct Firstn Get Retrieval by DBK of relation PROVA
 Conjunct Firstn Get Retrieval by DBK of relation PROVA
 I C
 1 one
 2 two
2 rows selected

 −− ...but bugchecks with more than 2 dbkeys in the IN clause

select * from prova where dbkey in (:dbk1,:dbk2,:dbk3);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DGA0:[USER]RDSBUGCHK.DMP;

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.11 Left OJ Query Applying ZigZag Match Strategy
Bugchecks

Bug 2693889

The following left OJ query applying zigzag match strategy bugchecks.

SELECT COUNT(*)
FROM
 t1, t2 LEFT OUTER join t2_tpl t3
 ON (t2.std_heat_number = t3.std_heat_number)
 WHERE t1.steel_code = '123'
 AND t1.std_heat_number = t2.std_heat_number;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file <...>
%RDB−E−BAD_REQ_HANDLE, invalid request handle

This problem is caused by the fix for Bug 2220891, introduced in Rdb Release 7.0.6.4, where the zigzag
match code was re−designed for checking the need of data type conversion between match keys.

Oracle® Rdb for OpenVMS

2.1.11 Left OJ Query Applying ZigZag Match Strategy Bugchecks 28

As a workaround, the query works if the SQL flags 'ZIGZAG_OUTER' is turned off, as in the following
example.

set flags 'nozigzag_outer';
SELECT COUNT(*)
FROM
 tab_steeldescr t0,
 tab_stdheat t1 LEFT OUTER join tab_stdheat_tpl t2
 ON (t1.std_heat_number = t2.std_heat_number)
 WHERE t0.steel_code = '123'
 AND t0.std_heat_number = t1.std_heat_number;
Tables:
 0 = TAB_STEELDESCR
 1 = TAB_STDHEAT
 2 = TAB_STDHEAT_TPL
Aggregate: 0:COUNT (*)
Conjunct: 0.STD_HEAT_NUMBER = 1.STD_HEAT_NUMBER
Match
 Outer loop
 Index only retrieval of relation 0:TAB_STEELDESCR
 Index name TAB_STEELDESCR_USX_1 [1:1]
 Keys: 0.STEEL_CODE = '123'
 Inner loop
 Temporary relation
 Match (Left Outer Join)
 Outer loop
 Index only retrieval of relation 1:TAB_STDHEAT
 Index name TAB_STDHEAT_DRX_1 [0:0]
 Inner loop (zig−zag)
 Index only retrieval of relation 2:TAB_STDHEAT_TPL
 Index name TAB_STDHEAT_TPL_DRX_1 [0:0]

 0
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.12 Unexpected Privileges Required Using VLM or SSB
Features with OpenVMS Galaxy Support Enabled

Previously, processes accessing or creating row caches using the VLM (Very Large Memory) or SSB (System
Space Buffers) features in an OpenVMS Galaxy environment were required to have the PRMGBL and
SYSGBL privileges enabled.

This problem has been corrected in Oracle Rdb Release 7.1.1. During VLM or SSB creation or mapping in a
Galaxy Environment, Oracle Rdb explicitly enables the PRMGBL and SYSGBL privileges.

2.1.13 Processes Loop at IPL2 When VLM or SSB Features Used

Bug 2859466

It was possible for processes to become stuck in a loop in the Oracle Rdb image RDMPRV71.EXE at VMS
interrupt priority level (IPL) 2. Because the process was looping at an elevated IPL, it was not possible to
delete the process. A system reboot was necessary to get rid of the looping processes. This problem only
occurred when the VERY LARGE MEMORY (VLM) or SHARED MEMORY IS SYSTEM (SSB) features

Oracle® Rdb for OpenVMS

2.1.12 Unexpected Privileges Required Using VLM or SSB Features with OpenVMS Galaxy Support Enabled29

were utilized for database shared memory or row caches.

Often the initial symptom of this problem was unresolved database stalls. Because the looping processes often
held database locks, and since the looping prevented the processes from responding to blocking AST requests,
other database processes would stall waiting for the looping processes to release their locks. Analysis of the
processes not responding to blocking AST requests revealed that those processes were looping in the
RDMPRV71.EXE image.

To avoid this problem, disable the VLM and SSB features for database shared memory or row caches.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.14 Memory Leak With Preattached SQL/Services Service and
Persona Enabled

Bug 2742952

When a preattached service was used to connect to a database that has persona enabled, the connection would
leak bytlm for every connection attempt.

Possible workarounds are: use a generic service or disable persona.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.1.15 Persona Rights Not Honored With Non−privileged
SQL/Services Service

Bug 2641144

A client granted privileges, via rights identifiers, did not have the expected access to a database with "Security
Checking is External (Persona support Enabled)" and a SQL/Services database service owner with only
enough privileges to attach to the database.

The following example shows this:

Service owner: account has netmbx, tmpmbx and one identifier which has database "SELECT" only.

Client: account has netmbx, tmpmbx and another identifier which has database "ALL" and table "ALL"
privileges.

In this scenario, the client can select from the table but anything else results in an "%RDB−E−NO_PRIV,
privilege denied by database facility" error.

A workaround is to increase the privileges of the service owner.

This problem has been corrected in Oracle Rdb Release 7.1.1.

Oracle® Rdb for OpenVMS

2.1.14 Memory Leak With Preattached SQL/Services Service and Persona Enabled 30

2.2 SQL Errors Fixed

2.2.1 Simple CASE and DECODE Not Processed Correctly In
Dynamic SQL

Bug 2711614

In prior releases of Rdb 7.1, the DECODE and simple CASE expression may not return the correct result
when used in dynamic SQL. In particular, when the primary value expression is unknown, SQL tries to derive
a data type from the other expressions in the DECODE or CASE expression.

The following output from a dynamic SQL application shows the error. The input data type is set to
INTEGER and not to VARCHAR as expected.

SELECT DECODE(:CHAR_BIND_VAR,'Y',0,1) FROM RDB$DATABASE
SQLDA: Loading 1 field...
{Enter * to set field to NULL}
 0/: Integer: −> Y
SQLDA [CURS_CMDLIN] Output:
 0/: INTEGER:1

One workaround is to explicitly use a CAST expression to provide a data type to the bind variable.

SELECT DECODE(CAST(:CHAR_BIND_VAR AS CHAR),'Y',0,1) FROM RDB$DATABASE
SQLDA: Loading 1 field...
{Enter * to set field to NULL}
 0/CHAR_BIND_VAR: Char(1/1): −> Y
SQLDA [CURS_CMDLIN] Output:
 0/: INTEGER:0

This problem has been corrected in Oracle Rdb Release 7.1.1.

Note

Dynamic SQL is used by SQL*net for Rdb, SQL/Services, ODBC and JDBC.

2.2.2 PARTITION Clause Of SET TRANSACTION ... RESERVING
Ignored

Bug 2760766

In prior versions of Rdb 7.1, the PARTITION clause of the SET TRANSACTION ... RESERVING statement
was being ignored. This meant that the specified locking for those partitions was not used and the table itself
was locked for SHARED READ mode.

This problem affected the SQL SET TRANSACTION and DECLARE TRANSACTION statement as well as
RMU/LOAD/PARALLEL which used this interface.

2.2 SQL Errors Fixed 31

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.2.3 Unexpected BAD_SYM Error When Recreating Table With
IDENTITY Column

In prior releases of Oracle Rdb 7.1, dropping a table and recreating it in the same transaction would fail with
an OBSOLETE_METADA error. The following example shows the error.

SQL> drop table DIST_ALL_LAST;
SQL> create table DIST_ALL_LAST
cont> (ident integer identity,
cont> last_name NAME_DOMAIN,
cont> frequency real,
cont> cumulative real,
cont> rank integer);
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that
no longer exist
−RDMS−F−BAD_SYM, unknown sequence symbol − DIST_ALL_LAST

The special sequence created for the IDENTITY column was not correctly unloaded by the DROP TABLE
statement. This problem could be avoided by executing a COMMIT between the DROP TABLE and the
CREATE TABLE.

This problem has been corrected in Oracle Rdb Release 7.1.1.

Oracle® Rdb for OpenVMS

2.2.3 Unexpected BAD_SYM Error When Recreating Table With IDENTITY Column 32

2.3 Oracle RMU Errors Fixed

2.3.1 Data Corruption In V7.0 After RMU/CONVERT/ROLLBACK If
Rows Updated in V7.1

Bug 2844363

Oracle Rdb Release 7.1 includes an improved algorithm for data compression. If a database is converted to
Rdb 7.1 format using the RMU/CONVERT/NOCOMMIT command, rows are stored using the older, less
efficient compression algorithm in case the database is subsequently converted back to 7.0 using the
RMU/CONVERT/ROLLBACK command. However, it was possible to update a row in Rdb 7.1 where such
update would use the new compression algorithm. Such a row cannot be read by Rdb 7.0 if the database is
converted with the RMU/CONVERT/ROLLBACK command.

Data corruption or bugchecks might result.

A workaround for this problem would be to assure that no 7.1 record which might have been updated with 7.1
is compressed with the new algorithm before using the RMU/CONVERT/ROLLBACK command. Such a
workaround would involve assuring that there are no duplicate strings in any 7.1 updated record in the
database where such duplicates are longer than 127 characters.

Note that it does not matter whether the record was stored with Rdb 7.1 or any earlier version only that it is
updated with Rdb 7.1.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.3.2 RMU /UNLOAD /AFTER_JOURNAL Indicated Record
Length Incorrect

Previously, the RMU /UNLOAD /AFTER_JOURNAL command could return incorrect record length value in
the extracted data. For example, the data length field (RDB$LM_DATA_LEN) would contain 107 while the
record itself was 108 bytes long.

This problem could occur when the number of columns in a table had changed over time due to metadata
modifications. When enough changes had accumulated to alter the number of bytes in a record's "null bit
vector", the RMU /UNLOAD /AFTER_JOURNAL command could miscalculate the actual record length
returned. All data and null bit fields are returned correctly, only the record length field was in error.

This problem has been corrected in Oracle Rdb Release 7.1.1. The RMU /UNLOAD /AFTER_JOURNAL
command now correctly calculates and returns the data length value.

2.3.3 RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS Leaves
AIJ Open

Previously, when using the RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS command and specifying
AIJ backup files to extract, the last "offline" AIJ backup file would be left open. This prevented the file from

2.3 Oracle RMU Errors Fixed 33

being deleted or copied.

This problem has been corrected in Oracle Rdb Release 7.1.1. Each AIJ backup file is closed after it is
processed.

2.3.4 Some RMU Parallel Backup Parameters Were Incorrectly
Set

Bug 2767860

For Rdb V7.0 and V7.1 RMU Parallel Backup, if new style tape density codes were specified on the
command line using the /DENSITY qualifier, certain parallel backup options were not set correctly in the Plan
file. They were also not executed correctly if the Plan file was edited to specify them. This happened because
boolean settings in the Plan file structure that represented these values were cleared because of this problem.
See the example below for the specific options affected.

New style density codes have the format /DENSITY=(TK89,COMPACTION) as opposed to the previous
numerical density codes such as /DENSITY=1. This would only happen in parallel backup to tape devices,
not in non−parallel backups where the /PARALLEL and /PLAN qualifiers are not specified. This has been
fixed and these options are now correctly set in the Plan file and correctly executed.

The following example shows the RMU/BACKUP/PARALLEL command line options that were set correctly
if a new style density value was not specified but were set incorrectly if a new style density code value was
specified.

$ INIT/MEDIA=NOCOMPACTION TAPE$DEV400: LABEL1
$ INIT/MEDIA=NOCOMPACTION TAPE$DEV500: LABEL2
$ RMU/BACKUP/ONLINE/ACCEPT/REWIND/LABEL=(LABEL1,LABEL2)/CHECKSUM−
 /DENSITY=(TK87,COMPACTION)/LOG/BLOCK=30000/PARALLEL=(EXEC=2)/NOEXEC−
 /LIST=MFP.PLAN MF_PERSONNEL TAPE$DEV400:MFP.RBF, TAPE$DEV500:

$ INIT/MEDIA=COMPACTION TAPE$DEV400: LABEL1
$ INIT/MEDIA=COMPACTION TAPE$DEV500: LABEL2
$ RMU/BACKUP/ONLINE/ACCEPT/REWIND/LABEL=(LABEL1,LABEL2)/CHECKSUM−
 /LOG/BLOCK=30000/PARALLEL=(EXEC=2)/NOEXEC−
 /LIST=MFP.PLAN MF_PERSONNEL TAPE$DEV400:MFP.RBF, TAPE$DEV500:

$ DIFFERENCES MFP.PLAN;2 MFP.PLAN;1

File device:[directory]mfp.plan;2
 17 Block_Size = 30000
 18 ! Density = (density_value,[no]compaction)
 19 ![No]Group_Size = number of blocks between XOR blocks

File device:[diretory]mfp.plan;1
 17 ! Block_Size = bytes per tape block
 18 Density = (TK87, COMPACTION)
 19 ![No]Group_Size = number of blocks between XOR blocks

File device:[directory]mfp.plan;2
 24 Checksum_Verification
 25 CRC = AUTODIN_II
 26 NoIncremental

Oracle® Rdb for OpenVMS

2.3.4 Some RMU Parallel Backup Parameters Were Incorrectly Set 34

File device:[directory]mfp.plan;1
 24 NoChecksum_Verification
 25 NOCRC
 26 NoIncremental

File device:[directory]mfp.plan;2
 31 Online
 32 Quiet_Point
 33 Rewind
 34 Statistics
 35 ACL
 36 ![No]Scan_Optimization

File device:[directory]mfp.plan;1
 31 NoOnline
 32 NoQuiet_Point
 33 NoRewind
 34 NoStatistics
 35 NoACL
 36 ![No]Scan_Optimization

The workaround for this problem is to initialize the tape to the desired density before doing the parallel
backup so that new style density codes do not have to be specified on the command line and in the Plan file.

$ INIT/MEDIA=COMPACTION TAPE$DEV400: LABEL1
$ INIT/MEDIA=COMPACTION TAPE$DEV500: LABEL2
$ RMU/BACKUP/ONLINE/ACCEPT/REWIND/LABEL=(LABEL1,LABEL2)/CHECKSUM−
 /LOG/BLOCK=30000/PARALLEL=(EXEC=2)/NOEXEC−
 /LIST=MFP.PLAN MF_PERSONNEL TAPE$DEV400:MFP.RBF, TAPE$DEV500:
$ RMU/BACKUP/PLAN MFP.PLAN

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.3.5 RMU Parallel Backup New Style Tape Density Not Set
Correctly

Bug 2767860

For Rdb V7.0 and V7.1 RMU Parallel Backup, if new style tape density codes were specified on the
command line using the /DENSITY qualifier and in the Plan file, the specified density was not set. Instead,
the density the tape was currently initialized to when the backup to tape was executed would be used.

New style density codes have the format /DENSITY=(TK89,COMPACTION) as opposed to the previous
numerical density codes such as /DENSITY=1. This would only happen in parallel backup to tape devices,
not in non−parallel backups where the /PARALLEL and /PLAN qualifiers are not specified. This has been
fixed and the tape device is now set to the density specified with the /DENSITY qualifier and in the Plan file.

The following example shows that even though a density of TK87 and compaction was specified on the
command line and in the Plan file, when the parallel backup to tape was executed, compaction was not used.
Instead, the density the tape device had been initialized to, no compaction, was used.

$ INIT/MEDIA=NOCOMPACTION TAPE$DEV400: LABEL1
$ INIT/MEDIA=NOCOMPACTION TAPE$DEV500: LABEL2

Oracle® Rdb for OpenVMS

2.3.5 RMU Parallel Backup New Style Tape Density Not Set Correctly 35

$ RMU/BACKUP/ONLINE/ACCEPT/REWIND/LABEL=(LABEL1,LABEL2)/CHECKSUM−
 /DENSITY=(TK87,COMPACTION)/LOG/BLOCK=30000/PARALLEL=(EXEC=2)/NOEXEC−
 /LIST=MFP.PLAN MF_PERSONNEL TAPE$DEV400:MFP.RBF, TAPE$DEV500:
$ RMU/BACKUP/PLAN MFP.PLAN
$ SHOW DEVICE/FULL TAPE$DEV400

Magtape tape$dev400:, device type TZ87, is online, record−oriented device,
 file−oriented device, available to cluster, error logging is enabled,
 loader present, controller supports compaction (compaction disabled),
 device supports fastskip.

$ SHOW DEVICE/FULL TAPE$DEV500

Magtape tape$dev500:, device type TZ87, is online, record−oriented device,
 file−oriented device, available to cluster, error logging is enabled,
 loader present, controller supports compaction (compaction disabled),
 device supports fastskip.

The workaround for this problem is to initialize the tape to the desired density before doing the parallel
backup so that a new style density value does not have to be specified on the command line and in the Plan
file.

$ INIT/MEDIA=COMPACTION TAPE$DEV400: LABEL1
$ INIT/MEDIA=COMPACTION TAPE$DEV500: LABEL2
$ RMU/BACKUP/ONLINE/ACCEPT/REWIND/LABEL=(LABEL1,LABEL2)/CHECKSUM−
 /LOG/BLOCK=30000/PARALLEL=(EXEC=2)/NOEXEC−
 /LIST=MFP.PLAN MF_PERSONNEL TAPE$DEV400:MFP.RBF, TAPE$DEV500:
$ RMU/BACKUP/PLAN MFP.PLAN

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.3.6 RMU Parallel Backup Sometimes Did Not Update the
Database Root

Bug 2767860

For Rdb V7.1, RMU Parallel Backup did not always update the database root of the database being backed up
at the end of the parallel backup after all valid RBF backup files had been written and closed. As a result, the
backup RBF files were valid but the date of the backup just finishing was not updated in the database root of
the database being backed up. The problem was caused by an error return status sometimes being returned by
an RMU worker process to SQL Services even though a success status should have been returned and no
problem had occured. The RMU Coordinator process could then be aborted by SQL Services before it could
update the database root, though sometimes it was able to update the root before being aborted. Since the
worker process should actually have returned a success status, no error was output by RMU parallel backup
but doing a "$SHOW SYMBOL $STATUS" at the end of the backup would show that the worker process had
failed.

$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8BCE4"
$ WRITE SYS$OUTPUT F$MESSAGE("%X12C8BCE4")

%RMU−F−EXECFAIL, Network error: Executor failure.

The SQL Services RMU dispatcher log would also show the problem.

Oracle® Rdb for OpenVMS

2.3.6 RMU Parallel Backup Sometimes Did Not Update the Database Root 36

%SQLSRV−E−EXEC_FAILURE, Executor process to which client was
connected has failed

The following example shows that no error was output by RMU Parallel Backup but an error status was
available in $STATUS and the SQL Services RMU dispatcher log. An RMU/DUMP/HEADER of the
database root showed that the backup dates for the database and each storage area had not been updated.

$ SHOW TIME
 12−FEB−2003 14:10:11

$ RMU/BACKUP/PLAN TEST_BACKUP.PLAN
$ SHOW SYMBOL $STATUS

 $STATUS == "%X12C8BCE4"

$ WRITE SYS$OUTPUT F$MESSAGE("%X12C8BCE4")

%RMU−F−EXECFAIL, Network error: Executor failure.

$ RMU/DUMP/HEADER MF_PERSONNEL

Storage area "RDB$SYSTEM"

 Status...
 − Area last backed up at 11−FEB−2003 13:57:02.39

Oracle Rdb specific root record

 Latest full backup file is dated 11−FEB−2003 13:57:02.39

$ SHOW TIME
 12−FEB−2003 14:21:12

There is no workaround for this problem except doing a non−parallel backup. If this problem happens, the
backup RBF files will always be good but the backup dates in the root will not be updated.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.3.7 RMU/BACKUP/AFTER_JOURNAL to Tape Could
Sometimes Hang

Bug 2586737

For Rdb V7.1 RMU, a backup of the AFTER_JOURNAL file to tape could sometimes hang. This was caused
by a problem that occured at the end of the backup to tape where the reader thread had finished the backup but
the writer thread did not detect that the reader thread had finished and kept looping waiting for it to finish.
This problem did not occur every time but there was a window where this problem could occur such that it
sometimes took as many as 20 repetitions of the backup before this problem occured.

The following example shows the backup of an AIJ file to tape that hung and had to be aborted by the
operator. At other times the backup would succeed.

$ RMU/BACKUP/AFTER/LABEL=LABEL1/FORMAT=NEW_TAPE/CRC=CHECKSUM/QUIET_POINT−
 /REWIND/BLOCK_SIZE=65024/PROT=(S:RW,O:RW,G:R,W:R)/LOG/ACTIVE_IO=5−
 DEVICE:[DIRECTORY]RDB_PROD $tape$dev31:RDB_PROD.AIJ

Oracle® Rdb for OpenVMS

2.3.7 RMU/BACKUP/AFTER_JOURNAL to Tape Could Sometimes Hang 37

%MOUNT−I−MOUNTED, LABEL1 mounted on _$tape$dev31: (DEV1)
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 1198
%RMU−I−LOGBCKAIJ, backing up after−image journal RDB$JOURNAL at 16:18:46.95
%RMU−I−QUIETPT, waiting for database quiet point at 17−SEP−2002 16:19:09.78
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 1199
%RMU−I−LOGAIJBCK, backed up 10010 committed transactions at 16:19:40.55
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully
%RMU−I−LOGAIJJRN, backed up 1 after−image journal at 16:19:40.55
%RMU−I−LOGAIJBLK, backed up 76904 after−image journal blocks at 16:19:40.55
%RMU−I−LOGAIJBCK, backed up 10010 committed transactions at 16:19:40.55
%JBC−F−JOBABORT, job aborted during execution

The workaround for this problem is to repeat the backup if it fails since it succeeds more often than it fails.

This problem has been corrected in Oracle Rdb Release 7.1.1.

2.3.8 RMU Load Support For Interchange (RBR) Files From SQL
EXPORT

The internal unload file (unl) and the SQL EXPORT interchange file (rbr) share a common protocol for
encoding metadata and data in a portable format. This can be seen by using the RMU/DUMP/EXPORT
command which can process both the unload and interchange files. However, RMU Load did not know how
to process the EXPORT interchange files which contain much more information than normally used by RMU
Load/Unload.

This release of Oracle Rdb has enhanced the RMU Load command to use a generalized protocol processor
and therefore tables exported by SQL can be individually loaded into a database.

The default behavior of RMU Load is to locate and load the first set of table data in the unload file. However,
this may not be the table of interest. A new qualifier, MATCH_NAME, has been added to RMU Load so that
the table name can be specified. If /MATCH_NAME is used without a value, RMU will assume the name of
the table being loaded is also the name of the table in the source data file. However, you can specify a table
name as a value for this qualifier to read from a different table. The default is /NOMATCH_NAME.

The following example shows part of a script for loading a copy of the PERSONNEL database using the
output from SQL EXPORT.

$! Export the database definition and the data
$ SQL$ EXPORT DATABASE FILENAME PERSONNEL INTO PERS.RBR;
$
$! Create an empty database (use RMU Load to add data)
$ SQL$ IMPORT DATABASE FROM PERS.RBR FILENAME COPY_PERS NO DATA;
$
$! Now use load to add the same table
$ RMU/LOAD COPY_PERS /MATCH_NAME=EMPLOYEES EMPLOYEES PERS.RBR
%RMU−I−DATRECREAD, 100 data records read from input file.
%RMU−I−DATRECSTO, 100 data records stored.
$
$ RMU/LOAD COPY_PERS /MATCH_NAME JOB_HISTORY PERS.RBR
%RMU−I−DATRECREAD, 274 data records read from input file.
%RMU−I−DATRECSTO, 274 data records stored.
$

Oracle® Rdb for OpenVMS

2.3.8 RMU Load Support For Interchange (RBR) Files From SQL EXPORT 38

$ RMU/LOAD COPY_PERS /MATCH_NAME SALARY_HISTORY PERS.RBR
%RMU−I−DATRECREAD, 729 data records read from input file.
%RMU−I−DATRECSTO, 729 data records stored.
$

.

.

.
$ RMU/LOAD COPY_PERS /MATCH_NAME WORK_STATUS PERS.RBR
%RMU−I−DATRECREAD, 3 data records read from input file.
%RMU−I−DATRECSTO, 3 data records stored.

2.3.9 Various RMU Commands Return File Access Conflict
Errors

Very rarely, some RMU commands (such as RMU /ALTER, RMU /RESTORE, RMU/SET and so on) can
return a File Access Conflict error. Typically, retrying the operation causes it to succeed.

This problem was caused by an infrequent race condition between the process running RMU and usually the
Oracle Rdb Monitor process when the RMU command was attempting to open the database root file. The
frequency of occurance was usually influenced by the system performance and load on the system.

This problem has been corrected in Oracle Rdb Release 7.1.1. RMU generally retries the operation when a
File Access Conflict error is detected such that another user (or the Oracle Rdb Monitor) that is in the process
of closing the root file has time to complete. In most cases, this retry is repeated for up to two minutes before
the File Access Conflict error is returned to the user.

Oracle® Rdb for OpenVMS

2.3.9 Various RMU Commands Return File Access Conflict Errors 39

Chapter 3
Software Errors Fixed in Oracle Rdb Release 7.1.0.5
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.0.5.

Chapter 3 Software Errors Fixed in Oracle Rdb Release 7.1.0.5 40

3.1 Software Errors Fixed That Apply to All Interfaces

3.1.1 Oracle Rdb Optimized for Alpha EV56 (21164A Processor
Chip) and Later Platforms

For improved performance on current generation Alpha processors, Oracle Rdb Release 7.1.0.5 (also known
as V7.1−05) is compiled explicitly for Alpha EV56 and later systems. This version of Oracle Rdb requires a
system with a minimum Alpha processor chip of EV56 and a maximum processor chip of Alpha EV68
(known as the Alpha 21264B).

This kit is functionally equivalent to Oracle Rdb Release 7.1.0.4 and was built from the same source code.
The only difference is a potentially improved level of performance.

In this kit, Oracle Rdb is explicitly compiled for EV56 and later Alpha processors such that the generated
instruction stream can utilize the byte/word extension (BWX) of the Alpha architecture. Additionally, this kit
is compiled with instruction tuning biased for performance of Alpha EV6 and later systems that support
quad−issue instruction scheduling.

For more details on this change, see the Installation Chapter of these Release Notes.

3.1 Software Errors Fixed That Apply to All Interfaces 41

Chapter 4
Software Errors Fixed in Oracle Rdb Release 7.1.0.4
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.0.4.

Chapter 4 Software Errors Fixed in Oracle Rdb Release 7.1.0.4 42

4.1 Software Errors Fixed That Apply to All Interfaces

4.1.1 Deadlocks From SET TRANSACTION RESERVING When
Fast Commit Enabled

Bug 2311238

In Oracle Rdb Release 7.1, there was an increased incidence of deadlock errors from a SET TRANSACTION
statement if a table was reserved in a non−default mode. For example:

SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE;
%RDB−E−DEADLOCK, request failed due to resource deadlock
−RDMS−F−DEADLOCK, deadlock on logical area 59

This problem was caused by optimizations introduced in Release 7.1. In previous releases, if another process
had a table reserved in an incompatible mode than that of the process starting a new transaction, the process
starting the transaction would write out all modified page buffers and demote all page locks before waiting for
the table lock. These actions can be tremendously expensive and in high contention environments would
essentially defeat the optimizations of the Fast Commit feature. In Release 7.1, the behavior was changed to
only demote locks on pages that had already been requested by other processes (a blocking AST had been
received). While that greatly reduced I/O and locking activity it also increased the likelihood that a deadlock
error would be received.

Since deadlock errors can be very disruptive to an application, and retrying the SET TRANSACTION would
often encounter the same problem, the old behavior of always releasing page locks when there is a lock
conflict on a table has been restored. Note that if there is a high likelihood that there will be table lock
contention, then there will be a considerable reduction in the efficiency of the Fast Commit feature. Use of
RESERVING modes other than the default SHARED WRITE should only be done when absolutely necessary
if the Fast Commit feature is enabled.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.2 Bugcheck at RDMS$$ALPHA$CONVERT_SORT+00000778

Bug 2220891

Under certain conditions, a query would result in a bugcheck in routine RDMS$$ALPHA$CONVERT_SORT
or RDMS$$CONVERT_SORT.

The following is an example which would show the problem. Create two tables with similar columns. One set
of columns are similar but not the same: INT and SMALLINT. The other set of columns are the same type,
VARCHAR.

create table table1 (column1 smallint, column2 varchar(5));
create table table2 (column1 int, column2 varchar(5));

insert into table1 values (100, 'abcde');
insert into table2 values (100, 'abcde');

4.1 Software Errors Fixed That Apply to All Interfaces 43

create index table1_idx on table1 (column1, column2);
create index table2_idx on table2 (column1, column2);
create index table2_idx on table2 (column1, column2);

select t1.column1, t2.column2 from table1 t1, table2 t2
 where t1.column1 = t2.column1
 and t1.column2 = t2.column2;

The bugcheck error would occur during compilation of the select statement.

As a workaround, this problem can be avoided by first disabling zigzag match strategies before executing this
particular SELECT statement. To disable zigzag match, SET FLAGS 'NOZIGZAG_MATCH' in interactive or
dynamic SQL. Then execute the SELECT statement and re−enable zigzag match for subsequent queries. If
you do not have that degree of control, then $ DEFINE RDMS$SET_FLAGS NOZIGZAG_MATCH prior to
executing the application program. Doing so will disable zigzag match strategies for all queries executed by
that application.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.3 RDMS$CREATE_LAREA_NOLOGGING Partly Ignored for
Objects with Row Caches

Bug 2155224

When using the RDMS$CREATE_LAREA_NOLOGGING logical name to avoid after−image journaling
when creating database objects that were cached (indexes, for example), it was possible that the after−image
journal was still being written to for each modified row. This resulted in unexpected journal growth. This was
also true for the NOLOGGING clauses for CREATE TABLE, CREATE STORAGE MAP, CREATE
INDEX, ALTER STORAGE MAP and ALTER INDEX.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The
RDMS$CREATE_LAREA_NOLOGGING logical name setting now correctly avoids writing to the
after−image journal for cached objects.

4.1.4 Exception in RDMS$$KOD_ISCAN_GET_NEXT

Bug 2225971

An ACCVIO exception and bugcheck could occur when range−list processing was in use.

An example of a query that would cause this error follows.

SQL> select a.case_id, b.pos_nr, b.h_line_num
cont> from
cont> case a, case_line b
cont> where
cont> a.case_num = b.case_num and
cont> a.case_status > 30 and
cont> (b.rec_num = '' or b.rec_num is null) and
cont> exists (select '*' from n_rec_line c
cont> where b.h_line_num=c.h_line_num and
cont> (c.rec_num = '' or c.rec_num is null) and

Oracle® Rdb for OpenVMS

4.1.3 RDMS$CREATE_LAREA_NOLOGGING Partly Ignored for Objects with Row Caches 44

cont> (not exists (select '*' from c_next_line d
cont> where d.line_num = c.line_num) and
cont> ((c.coll_num = '' or c.coll_num is null)`
cont> (c.coll_num <> '' and c.coll_num is not`
cont> not exists (select '*' from p_coll d
cont> where d.coll_num = c.coll_nu`
cont>)
cont>)
cont>)
cont>)
cont> order by a.case_id, b.pos_nr;
Get Retrieval by index of relation RDB$RELATIONS
 Index name RDB$REL_REL_NAME_NDX [1:1] Direct lookup
Sort
Cross block of 2 entries
 Cross block entry 1
 Leaf#01 BgrOnly RDB$RELATION_FIELDS Card=121
 BgrNdx1 RDB$RFR_REL_NAME_FLD_ID_NDX [1:1] Fan=8
 Cross block entry 2
 Get Retrieval by index of relation RDB$FIELDS
 Index name RDB$FIELDS_NAME_NDX [1:1] Direct lookup
Sort Conjunct
Match
 Outer loop
 Sort
 Cross block of 2 entries
 Cross block entry 1
 Conjunct Get
 Retrieval sequentially of relation CASE_LINE
 Cross block entry 2
 Conjunct Get
 Retrieval by index of relation CASE
 Index name CA00_HIDX_PS [1:1] Direct lookup
 Inner loop
 Aggregate Sort
 Cross block of 3 entries
 Cross block entry 1
 Leaf#01 BgrOnly N_REC_LINE Card=48527
 BgrNdx1 RE20_HIDX_S [(1:1)2] Fan=1
 BgrNdx2 RE20_COLLI_NUM_SIDX [0:1,(1:1)2] Bool Fan=44
 Cross block entry 2
 Conjunct Aggregate−F1
 Index only retrieval of relation P_COLL
 Index name PM10_HIDX_PS [1:1]
 Cross block entry 3
 Conjunct Aggregate−F1
 Index only retrieval of relation C_NEXT_LINE
 Index name CF20_SIDX_P [1:1]
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TEST]RDSBUGCHK.DMP;

The exception report in the bugcheck dump file is:

***** Exception at 0147DC64 : RDMS$$KOD_ISCAN_GET_NEXT + 00001804
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=000000004F435F50, PC=000000000147DC64, PS=00000009

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.1.3 RDMS$CREATE_LAREA_NOLOGGING Partly Ignored for Objects with Row Caches 45

4.1.5 Records Incorrectly Applied to a Key Entry in Sorted
Ranked Index

Bug 2322296

A problem in the way index entry currency was determined caused incorrect assignment of record identifiers
to index entries resulting in wrong results when the index was used in a search.

This problem only occurs in Sorted Ranked Indexes.

RMU/VERIFY of the index will show this problem as an informational or error message stating that the
cardinalities are inconsistent.

%RMU−I−BTRDUPCAR, Inconsistent duplicate cardinality (C1) of 224 specified
 for entry 1 at dbkey 60:52:1.
 Actual count of duplicates is 2.
%RMU−I−BTRDUPCAR, Inconsistent duplicate cardinality (C1) of 36 specified
 for entry 2 at dbkey 60:52:1.
 Actual count of duplicates is 2.
%RMU−I−BTRERPATH, parent B−tree node of 60:52:1 is at 60:50:0
%RMU−I−BTRDUPCAR, Inconsistent duplicate cardinality (C1) of 130 specified
 for entry 1 at dbkey 60:53:1.
 Actual count of duplicates is 386.
%RMU−I−BTRERPATH, parent B−tree node of 60:53:1 is at 60:50:0
%RMU−I−BTRROODBK, root dbkey of B−tree is 60:50:0
%RMU−I−NDXERRORS, 3 index errors encountered

It is highly recommended that sorted ranked indexes be verified regularly using RMU/VERIFY to determine
if this problem has occurred.

A possible workaround for this problem is to rebuild the affected indexes as this problem does not occur
during an index build.

In addition, affected indexes should be rebuilt after upgrading to Oracle Rdb Release 7.1.0.4 as this problem
does affect the index data stored on−disk.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.6 LRS Uses Too Much CPU in 7.1.0.1, 7.1.0.2, and 7.1.0.3

Bug 2042873

After you upgrade to Release 7.1.0.2, the LRS can consume excessive amounts of CPU if the LRS has been
allocated many buffers. This was not an issue prior to Release 7.0.6.2, but changes to the ABW algorithms
introduced in Release 7.0.6.2 significantly increased the cost of using large clean buffer counts. During
startup, the LRS changes its asynchronous batch write (ABW) parameter CLEAN BUFFER COUNT to be
half of the total buffer count, which can be a substantial number if the LRS has been allocated many buffers.

To avoid this problem, you can change the CLEAN BUFFER COUNT used by the LRS after it has started by
using the RMU Show Statistics dashboard facility:

RMU/SHOW STATISTICS /OPTION=UPDATE {standby database}1.

Oracle® Rdb for OpenVMS

4.1.5 Records Incorrectly Applied to a Key Entry in Sorted Ranked Index 46

Select Database Dashboard2.
Select Per−Process I/O Dashboard3.
Select the LRS process4.
Enter U for Update5.
Select ABW Clean BufCount6.
Enter 107.
Enter U for Update8.
Select ABW Batch Max9.
Enter 1010.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The LRS now sets the CLEAN BUFFER
COUNT to be 20% of the buffer pool, or 10 buffers, whichever is smaller.

4.1.7 Persona Nopriv Error Using SQLplus and Other OCI Clients

Bug 2388029

Non−privileged users could not connect from SQLplus even though they were granted database access. The
connect would succeed when 'persona support is disabled' but fail when 'persona support is enabled'.

The following example shows the problem:

UAF> show joe_nobody
Username: JOE_NOBODY Owner:
Account: UIC: [424,7] ([JOE_NOBODY])
CLI: DCL Tables: DCLTABLES
Default: DISK$DKD600:[JOE_NOBODY]
LGICMD:
Flags:
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
@ Expiration: (none) Pwdminimum: 6 Login Fails: 0
@ Pwdlifetime: (none) Pwdchange: 23−APR−2002 07:39
@ Last Login: 21−MAY−2002 11:39 (interactive), (none)
(non−interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 64000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 60 WSdef: 2000
Prio: 4 ASTlm: 250 WSquo: 4000
Queprio: 4 TQElm: 10 WSextent: 16384
CPU: (none) Enqlm: 2000 Pgflquo: 50000
Authorized Privileges:
 NETMBX TMPMBX
Default Privileges:
 NETMBX TMPMBX
Identifier Value Attributes
 JOE %X80010015
 READ_ONLY %X80010016

SQL> show protection on database rdb$dbhandle
Protection on Alias RDB$DBHANDLE
 (IDENTIFIER=SQLNET4RDB,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
 DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)
 (IDENTIFIER=JOE,ACCESS=SELECT+UPDATE)

Oracle® Rdb for OpenVMS

4.1.7 Persona Nopriv Error Using SQLplus and Other OCI Clients 47

 (IDENTIFIER=READ_ONLY,ACCESS=SELECT)
 (IDENTIFIER=[*,*],ACCESS=NONE)

Error from SQLplus when connecting as joe_nobody (after the service has started
successfully):
ERROR: ORA−01031: insufficient privileges

Error in executor log file:
Rdb operation..: EXECUTE IMMEDIATE − LOGIN2
Rdb error...(0): %RDB−E−NO_PRIV, privilege denied by database facility

Possible workarounds include giving the user more privileges or rights, or disabling persona 'security
checking is external (persona support is disabled)'.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.8 Query With OR and Repeated AND Predicates Looped
Forever

Bugs 2332845 and 370844

A simple SQL query with redundant terms in its WHERE clause would never finish. It would remain in a
never−ending CPU loop until the process executing the query was stopped.

The following query on the PERSONNEL database showed the problem:

select last_name, middle_initial from employees
 where ((middle_initial = 'I' and state = 'NH') and
 (middle_initial = 'O' and state = 'NH'))
 or
 (middle_initial = 'T' and state = 'NH');

The first leg of the OR expression contains four ANDed terms, two of which are the same (state = 'NH').
Logic in the Rdb optimizer consolidates common expressions. In this case, that would apply to the multiple
instances of the state = 'NH' predicate. That logic was faulty and could result in the query never completing
and the optimizer looping forever trying to process these expressions.

As a workaround, this problem can be avoided by rewriting the query such that the common term, state =
'NH', is factored out and used only once. It is also true that in this particular case, the first part of the OR
expression can be removed completely because the results must always evaluate to false (middle_initial = 'I'
and middle_initial = 'O'). That happens to be the form of the query submitted in a customer bug report.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.9 %SYSTEM−F−ILLEGAL_SHADOW, Illegal Formed Trap
Shadow Error

Bug 2466236

Some programs would get a bugcheck dump with an ILLEGAL_SHADOW message while using the dynamic
optimizer.

Oracle® Rdb for OpenVMS

4.1.8 Query With OR and Repeated AND Predicates Looped Forever 48

A workaround would be to use the command:

SET FLAGS 'MAX_STABILITY'

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.10 AIJBL_START_FLG Not Always Set Correctly in AIJ

Bug 2431069

When formatting data records into the After Image Journal (AIJ) file, Oracle Rdb will sometimes neglect to
correctly set the AIJBL_START_FLG when a journal record starts a new AIJBL entry. When this has
occurred, a dump of the AIJ will show output similar to the following:

62/138 TYPE=D, LENGTH=344, TAD=19−JUL−2002 13:17:44.59, CSM=00
 TID=8, TSN=0:896, AIJBL_START_FLG=00, FLUSH=01, SEQUENCE=15
 Continuation partial AIJBL ignored

To workaround the problem, any program that is parsing a journal file can infer the start of a new AIJBL by
looking at the current state of the AIJBL parse. That is, if a new AIJBUF data record is being read, and there
are no bytes expected from a partial AIJBL from the previous AIJBUF record, then assume that the next
AIJBUF record starts a new AIJBL.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.11 Left Outer Join Query With UNION Legs Returns Wrong
Results

Bug 2283189

The following query with left outer join over UNION legs should return 1 row:

create table nh_employees (emp_id char(5), emp_name char(10));
create table ny_employees (emp_id char(5), emp_name char(10));
create table favorite_sports (emp_id char(5), sport char(10));

insert into nh_employees values ('1000', 'Toliver');
insert into favorite_sports values ('1000', 'ping−pong');

set flags 'strategy, detail';
select * from
 (select ev.emp_name, ev.emp_id, fs.sport
 from
 (select ny.emp_name, ny.emp_id from ny_employees ny
 union all
 select nh.emp_name, nh.emp_id from nh_employees nh)
 as ev (emp_name, emp_id)
 left outer join
 (select emp_id, sport from favorite_sports)
 as fs (emp_id, sport)
 on ev.emp_id = fs.emp_id
 group by ev.emp_name, ev.emp_id, fs.sport)
 as v (employee_name, employee_id, sport)

Oracle® Rdb for OpenVMS

4.1.10 AIJBL_START_FLG Not Always Set Correctly in AIJ 49

where v.employee_name = 'Toliver';
Tables:
 0 = NY_EMPLOYEES
 1 = NH_EMPLOYEES
 2 = FAVORITE_SPORTS
Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>, 2.SPORT
 Sort: <mapped field>(a), <mapped field>(a), 2.SPORT(a)
 Conjunct: 0.EMP_NAME = 'Toliver' <== Note 1: wrong conjunct
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 0.EMP_NAME = 'Toliver'
 Get Retrieval sequentially of relation 0:NY_EMPLOYEES
 Merge block entry 2
 Conjunct: 1.EMP_NAME = 'Toliver'
 Get Retrieval sequentially of relation 1:NH_EMPLOYEES
 Cross block entry 2
 Merge of 1 entries
 Merge block entry 1
 Conjunct: <mapped field> = 2.EMP_ID
 Get Retrieval sequentially of relation 2:FAVORITE_SPORTS
0 rows selected

Note 1: The filter predicate should be a mapped conjunct rather than the base context from the merge leg of
the UNION query, for example: Conjunct: <mapped field> = 'Toliver'.

An attempt was made to fix a similar problem in Bug 1818374 where the problem query applies inner join.
The current problem applies left (or) full outer join (instead of inner join) that involves a derived table of
union between ny_employees and nh_employees, and another derived table favorite_sports.

There is no workaround for this problem other than modifying the query slightly by moving the where clause
inside of the GROUP BY, as in the following example.

set flags 'strategy, detail';
select * from
 (select ev.emp_name, ev.emp_id, fs.sport
 from
 (select ny.emp_name, ny.emp_id from ny_employees ny
 union all
 select nh.emp_name, nh.emp_id from nh_employees nh)
 as ev (emp_name, emp_id)
 left outer join
 (select emp_id, sport from favorite_sports)
 as fs (emp_id, sport)
 on ev.emp_id = fs.emp_id
 where ev.emp_name = 'Toliver' <== being moved inside
 group by ev.emp_name, ev.emp_id, fs.sport)
 as v (employee_name, employee_id, sport);
Tables:
 0 = NY_EMPLOYEES
 1 = NH_EMPLOYEES
 2 = FAVORITE_SPORTS
Merge of 1 entries
 Merge block entry 1

Oracle® Rdb for OpenVMS

4.1.10 AIJBL_START_FLG Not Always Set Correctly in AIJ 50

 Reduce: <mapped field>, <mapped field>, 2.SPORT
 Sort: <mapped field>(a), <mapped field>(a), 2.SPORT(a)
 Conjunct: <mapped field> = 'Toliver' <== Note 2: Correct conjunct
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 0.EMP_NAME = 'Toliver'
 Get Retrieval sequentially of relation 0:NY_EMPLOYEES
 Merge block entry 2
 Conjunct: 1.EMP_NAME = 'Toliver'
 Get Retrieval sequentially of relation 1:NH_EMPLOYEES
 Cross block entry 2
 Merge of 1 entries
 Merge block entry 1
 Conjunct: <mapped field> = 'Toliver'
 Conjunct: <mapped field> = 2.EMP_ID
 Get Retrieval sequentially of relation 2:FAVORITE_SPORTS
 EMPLOYEE_NAME EMPLOYEE_ID SPORT
 Ong 1000 ping−pong
1 row selected

Note 2: The conjunct is correct now by applying the mapped field rather than the base context table as before.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.12 Query With EXISTS Clause Using Hashed Index Returns
Wrong Results

Bug 2468741

The following query with an EXISTS clause that uses a hashed index, returns the wrong results.

Information for table T1
Columns for table T1:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
T1_COL_A CHAR(3)
T1_COL_C CHAR(6)

Indexes on table T1:
T1_AC_SRT with column T1_COL_A
 and column T1_COL_C
 Duplicates are allowed
 Type is Sorted
 Compression is DISABLED

Information for table T2

Columns for table T2:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
T2_COL_A CHAR(3)
T2_COL_B CHAR(2)
T2_COL_C CHAR(6)

Oracle® Rdb for OpenVMS

4.1.12 Query With EXISTS Clause Using Hashed Index Returns Wrong Results 51

Indexes on table T2:
T2_ABC_HSH with column T2_COL_A
 and column T2_COL_B
 and column T2_COL_C
 Duplicates are allowed
 Type is Hashed Scattered
 Compression is DISABLED
 Store clause: STORE in area_a1

T2_ACB_SRT with column T2_COL_A
 and column T2_COL_C
 and column T2_COL_B
 Duplicates are allowed
 Type is Sorted
 Compression is DISABLED

select * from t1;
 T1_COL_A T1_COL_C
 ABC 123456
1 row selected

select * from t2;
 T2_COL_A T2_COL_B T2_COL_C
 ABC 01 123456
1 row selected

set flags 'strategy,detail';

SELECT * FROM T1
 WHERE T1_COL_A = 'ABC' AND
 EXISTS (SELECT * FROM T2
 WHERE T2_COL_A = 'ABC' AND
 T2_COL_B = '01' AND
 T2_COL_C = T1_COL_C);
Tables:
 0 = T1
 1 = T2
Conjunct: <agg0> <> 0
Match
 Outer loop (zig−zag)
 Index only retrieval of relation 0:T1
 Index name T1_AC_SRT [1:1]
 Keys: 0.T1_COL_A = 'ABC'
 Inner loop (zig−zag)
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Conjunct: 1.T2_COL_B = '01'
 Index only retrieval of relation 1:T2
 Index name T2_ABC_HSH [1:1] <== See Note
 Keys: 1.T2_COL_A = 'ABC'
0 rows selected

Note: Partial Index retrieval [1:1] using 1 segment is applied to the hash index of 3 segments and no row is
found.

This bug is similar to Bug 2352298 except that this query applies the first segment T2_COL_A of the hashed
index T2_ABC_HSH [1:1] instead of 2 segments T2_COL_A, T2_COL_B (T2_ABC_HSH [2:2]). Both bugs
were introduced by the fix made for Bug 1635351 where more solutions are tried for each first segment
retrieval.

Oracle® Rdb for OpenVMS

4.1.12 Query With EXISTS Clause Using Hashed Index Returns Wrong Results 52

The optimizer should apply direct lookup using all 3 segments of the hashed index T2_ABC_HSH [3:3]. This
strategy is achieved only when an additional filter predicate for T1_COL_C is addeded to the query, as in the
following example.

SELECT * FROM T1
 WHERE T1_COL_A = 'ABC' AND
 T1_COL_C = '123456' AND ! <== Adding this line finds the row
 EXISTS (SELECT * FROM T2
 WHERE T2_COL_A = 'ABC' AND
 T2_COL_B = '01' AND
 T2_COL_C = T1_COL_C);
Tables:
 0 = T1
 1 = T2
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation 0:T1
 Index name T1_AC_SRT [2:2] Direct lookup
 Keys: (0.T1_COL_A = 'ABC') AND (0.T1_COL_C = '123456')
 Cross block entry 2
 Conjunct: <agg0> <> 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Index only retrieval of relation 1:T2
 Index name T2_ABC_HSH [3:3] Direct lookup <== now uses 3 segments
 Keys: (1.T2_COL_A = 'ABC') AND (1.T2_COL_B = '01') AND (1.T2_COL_C =
 0.T1_COL_C)
 T1_COL_A T1_COL_C
 ABC 123456
1 row selected

Since there is no workaround available for this type of problem other than changing the query or dropping the
hashed index, a new SQL flag called 'MAX_SOLUTION' has been added to allow the user to disable the
feature which optimizes the possible retrieval solutions to the maximum search space.

To disable this feature, do the following:

$define RDMS$SET_FLAGS "noMax_solution"

 OR

SQL> set flags 'noMax_solution'

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.13 Performance of Self−Referencing Foreign Key
Constraints

Bug 1668025

A self−referencing foreign key constraint is one in which the foreign and primary keys are in the same table.
The following is an example of a table definition with such a constraint.

create table t (pk char (3),
 fk char (3),

Oracle® Rdb for OpenVMS

4.1.13 Performance of Self−Referencing Foreign Key Constraints 53

 ... other columns ...
 constraint pk_constraint
 primary key (pk) not deferrable,
 constraint fk_constraint
 foreign key (fk)
 references t(pk) not deferrable);

It was observed that the optimizer strategy for the primary key constraint used database key access but the
strategy for the foreign key constraint did not. As a result, evaluation of the foreign key constraint on
something as simple as inserting a single row in a large table would take a long time to execute.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Note that this only applies to explicitly−defined, self−referencing, foreign key constraints. The phrase
"explicitly−defined" is meant to imply that the constraint is defined using the clause "foreign key ... references
...", and excludes any check constraint which might mimic the behavior of a foreign key constraint but which
is not explicitly identified as such.

For the self−referencing foreign key constraint, access by database key will be used for inserts and updates
but not for deletes. If the constraint evaluation is defined to be deferrable (executed at commit time), and if the
transaction includes one or more delete operations in addition to inserts and updates, database key retrieval
will not be used.

The following shows the self−referencing foreign key constraint strategy (the one defined in the preceding
example) for an insert operation. The line "Get Retrieval by DBK of relation 0:T" indicates that retrieval of
rows for the main part of the constraint query is done by database key access.

SQL> set flags 'detail,strategy,request';
SQL> insert into t(pk, fk) values ('3', '5');

 ... strategy for the primary key constraint not shown ...

~Sn: Constraint "FK_CONSTRAINT" evaluated (verb)
Tables:
 0 = T
 1 = T
Cross block of 2 entries
 Cross block entry 1
 Conjunct: NOT MISSING (0.FK)
 Conjunct: 0.DBKEY = <var0>
 Firstn: 1
 Get Retrieval by DBK of relation 0:T
 Cross block entry 2
 Conjunct: <agg0> = 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Conjunct: 0.FK = 1.PK
 Get Retrieval sequentially of relation 1:T
%RDB−E−INTEG_FAIL, violation of constraint FK_CONSTRAINT caused operation
 to fail
−RDB−F−ON_DB, on database DISK:[DIR]DATABASE.RDB;1

Oracle® Rdb for OpenVMS

4.1.13 Performance of Self−Referencing Foreign Key Constraints 54

4.1.14 Online Change of Storage Area Access Mode Now
Allowed

Bug 2355629

In Oracle Rdb Release 7.1.0.1, a restriction was added to disallow the changing of storage area access modes
(READ ONLY or READ WRITE) while the database was being accessed by other users. For example:

$ RMU/OPEN MF_PERSONNEL
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ALTER STORAGE AREA EMPIDS_LOW READ WRITE;
%RDMS−F−NOEUACCESS, unable to acquire exclusive access to database
SQL>

That restriction has been lifted in Oracle Rdb Release 7.1.0.4. Storage area access modes may again be
changed while there are other users in the database.

4.1.15 RCS Exits with COSI−F−SUBLOCKS

Bug 2385585

In some cases of table lock conflicts with a user, the Record Cache Server (RCS) process can incorrectly fail
to dequeue a logical area lock. When the RCS process ultimately exits at database shutdown, it can fail with a
COSI−F−SUBLOCKS fatal error.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The RCS process now correctly releases
logical area locks after a blocking AST.

4.1.16 TRUNCATE TABLE Results in RMU−E−BADABMPAG &
RMU−W−ABMBITERR Messages from RMU /VERIFY

Bugs 2518620 and 483623

In some cases of truncating tables, the ABM and SPAM database page structures were not correctly
maintained. This could lead to BADABMPAG and ABMBITERR messages from a subsequent RMU
/VERIFY operation.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The TRUNCATE TABLE command now
correctly clears information from the ABM and SPAM structures.

4.1.17 Execution Trace For Dynamic Estimation Inaccurate

Where the dynamic optimizer was used to allow competition between multiple potentially useful indices for a
query, the estimation phase (ESTIM) was used to determine the cost of scanning each potentially useful index.

Once the cost of scanning the indexes had been estimated, the results of the process were reported in the
execution trace debug output. Since the introduction of TYPE IS SORTED RANKED indexes in version 7.0,
this output could be incorrectly displayed.

Oracle® Rdb for OpenVMS

4.1.14 Online Change of Storage Area Access Mode Now Allowed 55

The following is an example of the execution trace from a dynamic query.

SQL> set flags 'exec,strat'
SQL> select count(*) from employees where first_name>'A' and employee_id>'0';
~S#0005
Aggregate
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
 BgrNdx1 EMP_EMPLOYEE_ID [1:0] Fan=17
 BgrNdx2 EMP_FIRST_NAME [1:0] Fan=14
~E#0005.01(1) Estim Ndx:Lev/Seps/DBKeys 1:2/6\34 2:3/9\43
~E#0005.01(1) BgrNdx1 EofData DBKeys=100 Fetches=0+0 RecsOut=0 #Bufs=4
~E#0005.01(1) BgrNdx2 FtchLim DBKeys=0 Fetches=0+0 RecsOut=0
~E#0005.01(1) Fin Buf DBKeys=100 Fetches=0+0 RecsOut=100

 100
1 row selected

In the above example, the indices are TYPE IS SORTED, so the execution trace line for estimation, starting
with ~E#0005.01(1) Estim should display:

Ndx − The background index number for this strategy.•
Lev − The level in the index where the selected range spans more than one entry in an index node,
termed the split level.

•

Seps − The number of entries (separators) in the index node that are included in the selected range on
that index.

•

DBKeys − The newly estimated number of database keys that will be selected using this index.•

For indexes that are TYPE IS SORTED RANKED, the output meaning for two of these numbers is different:

Lev − The estimated number of level 1 nodes that will have to be scanned for this index.•
Seps − The estimated minimum number of database keys that will have to be read from this index.
This is the estimated number of database keys minus the amount of error calculated for that estimate.

•

For the remaining fields in the output, the meaning is the same.

In previous versions, it was possible for Oracle Rdb to confuse the two outputs, and display the wrong
information for the appropriate index type.

In the above example with indexes of TYPE IS SORTED, the output for index 2 shows a split level of 3 and
the number of separators as 9. This is incorrect. The following example shows the correct output:

SQL> select count(*) from employees where first_name>'A' and employee_id>'0';
~S#0005
Aggregate
Leaf#01 BgrOnly EMPLOYEES Card=100
 BgrNdx1 EMP_EMPLOYEE_ID [1:0] Fan=17
 BgrNdx2 EMP_FIRST_NAME [1:0] Fan=14
~E#0005.01(1) Estim Ndx:Lev/Seps/DBKeys 1:2/2\34 2:2/3\43
~E#0005.01(1) BgrNdx1 EofData DBKeys=100 Fetches=0+0 RecsOut=0 #Bufs=4
~E#0005.01(1) BgrNdx2 FtchLim DBKeys=0 Fetches=0+0 RecsOut=0
~E#0005.01(1) Fin Buf DBKeys=100 Fetches=0+0 RecsOut=100

 100
1 row selected

Oracle® Rdb for OpenVMS

4.1.14 Online Change of Storage Area Access Mode Now Allowed 56

Although the numbers displayed are incorrect, the calculation is correct so there is no effect on performance
due to this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.18 Dynamic Optimizer Index Estimation May Be Wrong

If more than one index may be useful for the execution of a particular query, the dynamic optimizer can be
used to allow competition between the available indices.

Each time the query executes, each index is examined to determine an estimate of the number of rows to be
found when scanning that index. Index estimation descends the index looking for the first node where the
selected range spans more than one entry in that index node. This is termed the split level in the index.

In cases where the index was of TYPE IS SORTED and there were many duplicate key values, Rdb might not
factor the duplicates into the estimate of the number of rows to be found. If this happened, the number of rows
could be significantly underestimated which could cause a less efficient index to be scanned in preference to a
more efficient one.

In the following example, there are 1700 records for each key value for background index 2 (BgrNdx2). In the
first query, the estimate is accurate but in the second query the estimate is significantly low.

SQL> set flags 'strategy,detail(5),exec'
SQL> select count(*) from t2 where f1 between 10 and 20 and f2 =11;
~S#0003
Tables:
 0 = T2
Aggregate: 0:COUNT (*)
Leaf#01 BgrOnly 0:T2 Card=170000
 Bool: (0.F1 >= 10) AND (0.F1 <= 20) AND (0.F2 = 11)
 BgrNdx1 I22 [1:1] Fan=17
 Keys: 0.F2 = 11
 BgrNdx2 I21 [1:1] Fan=17
 Keys: (0.F1 >= 10) AND (0.F1 <= 20)
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:1/1\3400 2:1/11\18700
.
.
.
SQL> select count(*) from t2 where f1 between 20 and 30 and f2 =11;
~S#0004
Tables:
 0 = T2
Aggregate: 0:COUNT (*)
Leaf#01 BgrOnly 0:T2 Card=170000
 Bool: (0.F1 >= 20) AND (0.F1 <= 30) AND (0.F2 = 11)
 BgrNdx1 I22 [1:1] Fan=17
 Keys: 0.F2 = 11
 BgrNdx2 I21 [1:1] Fan=17
 Keys: (0.F1 >= 20) AND (0.F1 <= 30)
~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 2:2/1\17 1:1/1\3400
.
.
.

Notice how in the first query the second background index (BgrNdx2) is estimated at 18700 DBKeys but only

Oracle® Rdb for OpenVMS

4.1.18 Dynamic Optimizer Index Estimation May Be Wrong 57

17 in the second query.

The problem occurred when estimation did not descend all the way to the level 1 (or leaf) index node. When
the split level was level 2 or higher in the index, the duplicates factor for that index was not used to adjust the
estimate.

The following example shows the corrected calculations.

SQL> select count(*) from t2 where f1 between 20 and 30 and f2 =11;
~S#0006
Tables:
 0 = T2
Aggregate: 0:COUNT (*)
Leaf#01 BgrOnly 0:T2 Card=170000
 Bool: (0.F1 >= 20) AND (0.F1 <= 30) AND (0.F2 = 11)
 BgrNdx1 I22 [1:1] Fan=17
 Keys: 0.F2 = 11
 BgrNdx2 I21 [1:1] Fan=17
 Keys: (0.F1 >= 20) AND (0.F1 <= 30)
~E#0006.01(1) Estim Ndx:Lev/Seps/DBKeys 1:1/1\3400 2:2/1\30071

To avoid this problem, you can add extra segments to the index to make it unique.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.19 DBR Does Not Write Valid TSN for Commit of 2PC
Transaction

Bug 2497161

If a two−phase commit (2PC) transaction is prepared and committed, but the process is terminated before it
can update its transaction state in the database, the database recovery process (DBR) may not use the correct
transaction sequence number (TSN) when it writes a commit record to the journal on behalf of the failed
process.

An example of a commit record with an incorrect TSN is shown below:

354589/784765 TYPE=C, LENGTH=14, TAD=16−JUL−2002 16:08:48.35, CSM=00
 TID=1708, TSN=0:0, AIJBL_START_FLG=01, FLUSH=00, SEQUENCE=255

Note that the TSN displayed is "0:0" which is not valid.

If the journal file is then used to recover the database via the RMU/RECOVER/RESOLVE command, the
committed transaction will be treated as an unresolved transaction requiring manual intervention, even though
the transaction had committed successfully.

The only way to completely avoid the problem is to not utilize the 2PC facility. If processes are not
terminated abnormally−−−for example, by using the DCL command "STOP /IDENTIFICATION"−−−then it
is highly unlikely the problem will occur.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.1.19 DBR Does Not Write Valid TSN for Commit of 2PC Transaction 58

4.1.20 Various Problems With Dynamic Estimation of Ranked
Indices

Bugs 2286177, 2556992, 2236618 and 1790142

When more than one index may be useful for a particular query, Oracle Rdb may choose to use the dynamic
optimizer to allow competition between indices during query execution.

The first phase of dynamic query execution is the estimation (ESTIM) phase that estimates the cost of
scanning each of the available indices.

Various problems have been reported during estimation on indices of type TYPE IS SORTED RANKED.

These problems may be limited to inaccurate estimates that may cause a less efficient index to be scanned in
preference to a more efficient index or they may cause bugcheck dumps.

Bugchecks may occur in PIOFETCH$WITHIN_DB or in PSII2FINDSEPINTERVAL. In either case, the
routine PSII2FINDSEPINTERVAL will be in the stack portion of the bugcheck dump file.

The following example shows the bad estimation of index two where a simple query actually selects zero
records.

Leaf#01 FFirst CLIENT_DATA Card=2500
 BgrNdx1 ALT_ID_NO_10_IDX [0:0] Fan=122
 BgrNdx2 ALT_ID_NO_9_IDX [1:1] Fan=122
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:1/2500/2500 2:1/0\2500

In the corrected version below, you will see that the estimation of index two correctly finds a precise estimate
of zero rows.

Leaf#01 FFirst CLIENT_DATA Card=2500
 BgrNdx1 ALT_ID_NO_10_IDX [0:0] Fan=122
 BgrNdx2 ALT_ID_NO_9_IDX [1:1] Fan=122
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:1/2500/2500 2:1/0/0 ZeroShortcut

The result is a significant improvement in performance with the corrected estimates.

The problem can only be avoided by not using indexes of TYPE IS SORTED RANKED.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.21 Count Scan Optimization Returns Wrong Results

Bug 2335887

A problem in the way count scan optimizations were carried out on sorted ranked indexes to determine the
starting index node for range searching sometimes resulted in incorrect count information being returned.

This problem could occasionally occur on multi−column sorted ranked indexes when they were used by the
optimizer to return count queries where only some of the leading columns of the index key were provided.

Oracle® Rdb for OpenVMS

4.1.20 Various Problems With Dynamic Estimation of Ranked Indices 59

A possible workaround for this problem is to disable count scan optimization by using the SET FLAGS
statement or logical name.

SQL> SET FLAGS 'NOCOUNT_SCAN';

or

$ DEFINE RDMS$SET_FLAGS 'NOCOUNT_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.22 Insert Statement Fails With Constraint Violation

Bugs 2602771, 2453935 and 2285818

A problem was found with an insert statement where the row was not inserted due to a constraint violation.

The original problem was revealed in Oracle Rdb Release 7.0.6.4 in Bug 2285818 where the shared
expression of multiple OR clauses was fixed.

The following reproducer, reported in the original bug, uses an insert statement with a constraint on the table.

create table t1 (afc_day_no smallint,
 validity_period tinyint,
 std_eov smallint);

alter table t1
 add constraint
 constraint t1_EOV_CHK
 check((validity_period = 13
 and std_eov >= afc_day_no
 and std_eov <= afc_day_no + 373)
 or
 (validity_period = 9
 and std_eov >= afc_day_no
 and std_eov <= afc_day_no + 373))
 not deferrable;

commit;

This insert results in a violation of the constraint, though it should not.

insert into t1 values (8304,13,8668);
%RDB−E−INTEG_FAIL, violation of constraint T1_EOV_CHK caused operation to fail
−RDB−F−ON_DB, on database TEST_DB.RDB;1

The following reproducer is the simple select query on a table with no constraint:

set flags 'stra,detail';

create table t2 (afc_day_no smallint,
 validity_period tinyint,
 std_eov smallint);
insert into t2 values (8304,13,8668);

Oracle® Rdb for OpenVMS

4.1.22 Insert Statement Fails With Constraint Violation 60

sel * from t2 where
 NOT ((validity_period = 13
 and std_eov >= afc_day_no
 and std_eov <= afc_day_no + 373)
 or
 (validity_period = 9
 and std_eov >= afc_day_no
 and std_eov <= afc_day_no + 373))
 ;
Tables:
 0 = T2
Conjunct: ((0.VALIDITY_PERIOD <> 13) OR (0.STD_EOV < 0.AFC_DAY_NO) OR (0.STD_EOV
 > (0.AFC_DAY_NO + 373))) AND ((0.VALIDITY_PERIOD <> 9) OR (0.STD_EOV
 < 0.AFC_DAY_NO) OR (0.STD_EOV > (0.AFC_DAY_NO + 373)))
Get Retrieval sequentially of relation 0:T2
 AFC_DAY_NO VALIDITY_PERIOD STD_EOV
 8304 13 8668
1 row selected

The select query works if the predicate branches under the OR clause are swapped, as in the following
example.

sel * from t2 where
 NOT (
 (validity_period = 9
 and std_eov >= afc_day_no
 and std_eov <= afc_day_no + 373)
 OR
 (validity_period = 13
 and std_eov >= afc_day_no
 and std_eov <= afc_day_no + 373)
) ;
Tables:
 0 = T2
Conjunct: ((0.VALIDITY_PERIOD <> 9) OR (0.STD_EOV < 0.AFC_DAY_NO) OR (0.STD_EOV
 > (0.AFC_DAY_NO + 373))) AND ((0.VALIDITY_PERIOD <> 13) OR (0.STD_EOV
 < 0.AFC_DAY_NO) OR (0.STD_EOV > (0.AFC_DAY_NO + 373)))
Get Retrieval sequentially of relation 0:T2
0 rows selected

The only workaround is to change the query as in the above example.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.23 Followup on Bug 2529598 From Oracle Rdb Release
7.0.6.5

Bug 2529598

A fix was made to correct the problem reported in Bug 2529598 in Oracle Rdb Release 7.0.6.5. The fix was
not complete.

The following is the original reproducer.

create table A (a1 integer, a2 integer, a3 integer);

Oracle® Rdb for OpenVMS

4.1.23 Followup on Bug 2529598 From Oracle Rdb Release 7.0.6.5 61

insert into A values (1,1,1);
insert into A values (2,1,1);
insert into A values (3,1,1);

create table B (b1 integer, b2 integer);
insert into B values (1,1);
insert into B values (2,1);

create table C (c1 integer, c2 integer, c3 integer);
insert into C values (1,1,1);
insert into C values (3,1,1);

create table D (d1 integer, d2 integer);
insert into D values (1,1);
insert into D values (1,2);

create view v_all as
 select
 a1, a2, a3, bc1, bc_2
 from (
 select A.a1, A.a2, A.a3,
 BC.bc1, BC.bc_2
 from A left outer join
 (select
 b1 as bc1,
 null as bc_2
 from B
 union
 select
 c1 as bc1,
 c2 as bc_2
 from C
) BC
 on BC.bc1 = A.a1, D
 where A.a1 = D.d1
) ABCD;

The following query should return 2 rows.

select * from v_all where bc_2 = 1;
Tables:
 0 = A
 1 = B
 2 = C
 3 = D
Conjunct: <mapped field> = 1
Merge of 1 entries
 Merge block entry 1
 Cross block of 2 entries
 Cross block entry 1
 Conjunct: NULL = 1 <== see NOTE
 Match (Left Outer Join)
 Outer loop
 Sort: 0.A1(a)
 Get Retrieval sequentially of relation 0:A
 Inner loop
 Temporary relation
 Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a)

Oracle® Rdb for OpenVMS

4.1.23 Followup on Bug 2529598 From Oracle Rdb Release 7.0.6.5 62

 Merge of 2 entries
 Merge block entry 1
 Get Retrieval sequentially of relation 1:B
 Merge block entry 2
 Conjunct: 2.C2 = 1
 Get Retrieval sequentially of relation 2:C
 Cross block entry 2
 Conjunct: 0.A1 = 3.D1
 Get Retrieval sequentially of relation 3:D
0 rows selected

NOTE: Since this conjunct for the predicate "bc_2 = 1" is mapped to the column 'NULL' of table B under the
UNION clause, it should not be generated as a filter on top of the left OJ query. This should be postponed to
be resolved at the top of the merged legs and thus serve as a filter applied to the combined rows of the UNION
clause.

The problem is caused by the presence of a NULL column in the select list of one of the UNION legs as part
of a left outer join query.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.24 Ranked Index Node Corruption After Insert of Duplicate
Record

Bug 2556212

In prior releases of Oracle Rdb, it was possible that the insertion of a duplicate record into sorted ranked
indexes would corrupt the first duplicate overflow node in the index entry.

This corruption could manifest itself in many different ways during subsequent operations on the index.

Some examples of the exceptions that may be seen after the index node is corrupted are:

**** Exception at 01D397E0 : PSII2REMOVEDUPBBC + 00000500
%COSI−F−BUGCHECK, internal consistency failure

or

***** Exception at 01C86A18 : PSII2SPLITNODE + 000003E8
%COSI−F−BUGCHECK, internal consistency failure

or

***** Exception at 118023A8 : PSII2INSERTDUPBBC + 00001520
%COSI−F−BUGCHECK, internal consistency failure

or

%RDB−E−NO_RECORD, access by dbkey failed because dbkey is no longer
associated with a record
−RDMS−F−NODBK, 46:683:8 does not point to a data record

Oracle® Rdb for OpenVMS

4.1.24 Ranked Index Node Corruption After Insert of Duplicate Record 63

This condition only occurs with sorted ranked indexes under the following conditions:

A sequence of inserts, updates and deletes of the same duplicate value (VAL1) force the production of
an overflow duplicates node.

1.

Subsequent deletions remove the duplicate entries that are on the primary index node for VAL1
leaving an empty primary node segment for that value with attached overflow nodes containing one or
more duplicate entries.

2.

Further insertions of values other than VAL1 refill the node where the VAL1 empty primary index
node segment resides.

3.

A subsequent insertion of a duplicate for VAL1 having a dbkey less than the first dbkey in the first
overflow causes a new bitmap segment to be inserted prior to the first segment on the overflow node
leading to a corruption of the overflow node.

4.

RMU/VERIFY/INDEX may highlight various errors within the corrupt node such as:

%RMU−I−BTRDUPCAR, Inconsistent duplicate cardinality (C1) of 31 specified
 for entry 1 at dbkey 47:564:0.
 Actual count of duplicates is 61.

or

%RMU−W−DATNOTIDX, Row in table T1 is not in any indexes.
 Logical dbkey is 46:673:0.

or

RMU−W−BADIDXREL, Index TR1 either points to a non−existent record or
 has multiple pointers to a record in table T1.
 The logical dbkey in the index is 46:683:8.

Rebuilding the index will provide a temporary workaround to this problem.

Another possible workaround is to recreate the index as a normal sorted (non−ranked) index.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.25 Unexpected Bugcheck When Using RDMS$SET_FLAGS
Logical

Bug 2608722

In prior versions of Oracle Rdb 7.1, the use of the AUTO_OVERRIDE option in the RDMS$SET_FLAGS
logical would cause Rdb to generate a bugcheck dump with the following outline:

Oracle Rdb Server 7.1.0.3•
SYSTEM−F−ACCVIO, access violation•
Exception occurred at RDMS$$PRIV_CHECK_ACCESS + 000000E8•
Called from RDMS_CHECK_DB_ACCESS + 00000064•
Called from RDMS_DEB_SETFLAGS + 00001C64•
Called from RDMS$$SET_DEBUG_FLAGS + 00000614•

The following example shows the effect:

Oracle® Rdb for OpenVMS

4.1.25 Unexpected Bugcheck When Using RDMS$SET_FLAGS Logical 64

$ define rdms$set_flags "auto_override"
$ sql$
SQL> attach 'file SCRATCH';
%RDMS−I−BUGCHKDMP, generating bugcheck dump file
USER2:[TEST]RDSBUGCHK.DMP;
%SQL−F−ERRATTDEC, Error attaching to database SCRATCH
−SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=000000000000179B, PC=0000000000000000, PS=00000000

The AUTO_OVERRIDE requires a privilege check and this was being performed too early during the
database attach. As a workaround, use the SQL SET FLAGS statement instead of the RDMS$SET_FLAGS
logical for the AUTO_OVERRIDE option.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.26 NOT NULL Test in OJ Query With UNION Legs Returns
Wrong Results

Bug 2529598

The following NOT NULL test in the query with left outer join over UNION legs should return 2 rows.

create table A (a1 integer, a2 integer, a3 integer);
insert into A values (1,1,1);
insert into A values (2,1,1);
insert into A values (3,1,1);

create table B (b1 integer, b2 integer);
insert into B values (1,1);
insert into B values (2,1);

create table C (c1 integer, c2 integer, c3 integer);
insert into C values (1,1,1);
insert into C values (3,1,1);

sel * from
 (select
 a1, bc1, bc_2
 from (
 select A.a1,
 BC.bc1, BC.bc_2
 from A left outer join
 (select
 b1 as bc1,
 null as bc_2 ! <= causes the problem
 from B
 union
 select
 c1 as bc1,
 c2 as bc_2
 from C
) BC
 on BC.bc1 = A.a1
) ABC) as v_all (a1, bc1, bc_2)
where v_all.bc_2 is NOT null;
Tables:
 0 = A

Oracle® Rdb for OpenVMS

4.1.26 NOT NULL Test in OJ Query With UNION Legs Returns Wrong Results 65

 1 = B
 2 = C
Conjunct: NOT MISSING (<mapped field>
Merge of 1 entries
Merge block entry 1
 Merge of 1 entries
 Merge block entry 1
 Conjunct: NOT MISSING (NULL <== this causes the problem
 Conjunct: NOT MISSING (2.C2)
 Match (Left Outer Join)
 Outer loop
 Sort: 0.A1(a)
 Get Retrieval sequentially of relation 0:A
 Inner loop
 Temporary relation
 Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a)
 Merge of 2 entries
 Merge block entry 1
 Get Retrieval sequentially of relation 1:B
 Merge block entry 2
 Conjunct: NOT MISSING (2.C2) <== should not be here
 Get Retrieval sequentially of relation 2:C
0 rows selected

The problem is caused by the presence of a NULL column in the select list of one of the UNION legs as part
of a left outer join query.

This problem has been corrected in Oracle Rdb Release 7.1.0.4

4.1.27 Bugchecks at PSII2SCANRESETSCAN

In prior releases of Oracle Rdb, it was possible that some queries involving sorted ranked indexes would
bugcheck when trying to re−establish a scan of a duplicates node. This could occur after a concurrent update
on the index node within the same session caused the current index node to be invalidated.

 Exception occurred at PSII2SCANRESETSCAN + 000003B0
 Called from PSII2SCANGETNEXTBBCDUPLICATE + 000000A8
 Called from RDMS$$KOD_ISCAN_GET_NEXT + 00000820

This condition only occurs with sorted ranked indexes where a sequence of inserts, updates, and deletes of the
same duplicate values force the production of an overflow duplicates node, but subsequent deletes remove all
or all but one of the duplicate entries that are on the primary index node for that duplicate value. During a
concurrent search, if an update caused the index node to be marked as invalid, the code trying to re−establish
the validity of the node might bugcheck.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.28 Stack Overflow Exception Replaced by
%RDMS−E−NOSOL_FOUND Signal

Bug 1021063

Oracle® Rdb for OpenVMS

4.1.27 Bugchecks at PSII2SCANRESETSCAN 66

The following full outer join query joining columns of different data types causes a stack overflow exception.

create table t1 (text CHAR(31));
create table t2 (lword INTEGER);

select text, lword from t1 full outer join t2
on text = lword;
%RDB−F−IMP_EXC, facility−specific limit exceeded
−RDMS−F−XPR_STACK_OFLO, expression forces too many levels of recursion

The optimizer does not allow the query with full outer join to apply a cross strategy and it overflows the stack.
Instead, it should signal an exception with the following message:

~S: Full OJ query with cross strategy was not possible
%RDMS−E−NOSOL_FOUND, No possible solution has been found by Rdb optimizer

The following explanation has been added to this message.

Explanation

No possible solution has been found by Rdb optimizer for the following reason: − Full outer join query with
cross strategy is not possible. Only MATCH join execution is allowed for full outer join.

User Action

Check if the join keys of the join predicates are compatible in data type. If the keys are not compatible, please
apply a CAST function to make it compatible data type to be used as a join key in a match join strategy.

The query works if the column 'text' is cast as integer, as in the following example.

select text, lword_2 from all_dtps full outer join all_dtps_2
on (cast(text as integer))= lword_2 ;
 ALL_DTPS.TEXT ALL_DTPS_2.LWORD_2
 1 1
 2 NULL
2 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.29 Another OR With Constant Predicate Returns Wrong
Results

Bugs 2632604 and 2405927

The following query with an OR predicate containing a constant predicate should return some rows.

set flags 'strategy,detail';

SELECT t1_cd_vendor
 FROM t1, t2 WHERE
 t1_nr_cm starting with trim(trailing ' ' from '685094452195') AND
 t1_in_transmitido <> 'E' AND
 vend_cd_vendor = t1_cd_vendor AND
 ((t2_dt_desativacao = '17−NOV−1858' AND 'N' = 'N') OR 'N' = 'S');

Oracle® Rdb for OpenVMS

4.1.29 Another OR With Constant Predicate Returns Wrong Results 67

~S: Outline "T1_T2" used
Tables:
 0 = T1
 1 = T2
Conjunct: (1.T2_CD_VENDOR = 0.T1_CD_VENDOR)
 AND ('N' = 'S') ! <== See Note
Match
 Outer loop (zig−zag)
 Conjunct: ((1.T2_DT_DESATIVACAO = '17−NOV−1858') AND ('N' = 'N')) OR ('N'
 = 'S')
 Get Retrieval by index of relation 1:T2
 Index name T2_CD_VENDOR_SRT [0:0]
 Inner loop
 Temporary relation
 Sort: 0.T1_CD_VENDOR(a)
 Leaf#01 BgrOnly 0:T1 Card=427
 Bool: (0.T1_NR_CM STARTING WITH TRIM (TRAILING ' ' FROM '685094452195'))
 AND (0.T1_IN_TRANSMITIDO <> 'E')
 BgrNdx1 T1_NR_CM_SRT [1:1] Fan=10
 Keys: 0.T1_NR_CM STARTING WITH TRIM (TRAILING ' ' FROM '685094452195')
0 rows selected

NOTE: The constant predicate ('N' = 'S') is erroneously generated here.

This is a regression caused by the fix made for Bug 2405927.

As a workaround, the query works if the outline "T1_T2" is redefined with the tables being swapped between
the match leg.

create outline T1_T2_good
id '9A73A72336C0769CCE5F009EB6495FAE'
 mode 0
 as (
 query (
 −− For loop
 subquery (
 T1 0 access path index T1_NR_CM_SRT
 join by match to
 T2 1 access path index T2_CD_VENDOR_SRT
)
)
)
 compliance optional;

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.1.30 Ranked Index Node Corruption After Deletion of Duplicate
Record

Bug 2593578

In prior releases of Oracle Rdb, it was possible that the deletion of a duplicate record from a sorted ranked
index could corrupt index entries that occur later in the same index node.

This corruption could cause access violations in various stages of index operations.

Oracle® Rdb for OpenVMS

4.1.30 Ranked Index Node Corruption After Deletion of Duplicate Record 68

This condition only occurs with sorted ranked indexes under the following conditions:

A sequence of inserts, updates and deletes of the same duplicate value (VAL1) force the production of
an overflow duplicates node.

1.

Subsequent deletions remove the duplicate entries that are on the primary index node for VAL1
leaving an empty primary node segment for that value with attached overflow nodes containing one or
more duplicate entries.

2.

Further deletions of duplicates for VAL1 eventually leave a single unique entry for that value.3.
The size of the compressed entry dbkey of this new unique entry is larger than the size of the
compressed dbkey of the first overflow node that had just been removed.

4.

There exists at least one more entry in the same index node occurring after the VAL1 entry.5.

It was possible that the following entry in the index node would be corrupted.

RMU/VERIFY/INDEX may highlight various errors within the corrupt node such as:

%RMU−W−DATNOTIDX, Row in table T3 is not in any indexes.
 Logical dbkey is 70:67322:0.

Rebuilding the index will provide a temporary workaround to this problem.

Another possible workaround is to recreate the index as a normal sorted (non−ranked) index.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.1.30 Ranked Index Node Corruption After Deletion of Duplicate Record 69

4.2 SQL Errors Fixed

4.2.1 Incorrect Handling of FOR Loop Select List Columns

Bug 2309767

In prior releases of Oracle Rdb, reference to the DBKEY of a table using the FOR loop variable could return
the wrong table's DBKEY.

The following example shows this problem.

SQL> begin
cont> declare :rc integer = 0;
cont>
cont> for :EJH as
cont> select JH.dbkey
cont> from employees E, job_history JH
cont> where jh.employee_id = '00164'
cont> and jh.employee_id = e.employee_id
cont> do
cont> trace 'processing row';
cont> update job_history JH
cont> set jh.employee_id = '00164'
cont> where JH.DBKEY = :EJH.DBKEY;
cont> get diagnostics :rc = row_count;
cont> trace 'updated ', :rc;
cont> end for;
cont> end;
%RDB−E−NO_RECORD, access by dbkey failed because dbkey is no longer associated
with a record
−RDMS−F−NODBK, 66:15:1 does not point to a data record

A FOR loop declares a special variable which can be used to reference the results of the select statement. This
list is used to match the names for subsequent references in the FOR loop body. The DBKEY of a table is an
exception as it need not be explicitly selected from the table. It was this exception which caused the incorrect
behavior.

The following problems are corrected in this release of Oracle Rdb.

FOR :A AS SELECT DBKEY FROM T
In prior releases, the select list was not used to resolve the DBKEY reference. Instead the first
DBKEY found for all tables in the join was used. SQL now uses the select list first to locate the
DBKEY. If none is found and the FOR loop is processing a single table, then that table's DBKEY is
used. If more than one DBKEY is visible because of a join condition, then an error will be reported.

%SQL−F−FLDAMBIG, Column DBKEY is not unique in tables in the FROM clause

1.

FOR :A AS SELECT LAST_NAME AS DBKEY FROM T
While not recommend by Oracle, it is legal to rename a column as "DBKEY" using the AS clause. In
prior releases, this renaming was ignored and the actual DBKEY of the table was used. SQL now
processes the renamed column correctly.

2.

FOR :A AS SELECT ROWID FROM T
The names DBKEY and ROWID are synonymous. It is possible to fetch the ROWID in the select list

3.

4.2 SQL Errors Fixed 70

and later reference the value using DBKEY. Oracle recommends that the name be used consistently as
it is possible that this behavior may change in a future release.
FOR :A AS SELECT * FROM T, S
In prior releases, a reference to DBKEY in a join context was allowed and SQL would choose the first
table. This erroneous behavior is now fixed. SQL will now report an error.

%SQL−F−FLDAMBIG, Column DBKEY is not unique in tables in the FROM clause

4.

FOR :A AS SELECT * FROM EMPLOYEES, JOB_HISTORY
If columns from different tables had the same name or if the AS clause was used to rename a column
to the same name as an existing column, then SQL did not report ambiguous column references
within the FOR loop body.

SQL> begin
cont> declare :rc integer = 0;
cont>
cont> for :EJH as
cont> select *
cont> from employees E, job_history JH
cont> where jh.employee_id = '00164'
cont> and jh.employee_id = e.employee_id
cont> do
cont> trace 'processing row';
cont> update job_history JH
cont> set jh.employee_id = '00164'
cont> where JH.employee_id = :EJH.employee_id;
cont> get diagnostics :rc = row_count;
cont> trace 'updated ', :rc;
cont> end for;
cont> end;
%SQL−F−FLDAMBIG, Column EMPLOYEE_ID is not unique in tables in the FROM clause

5.

These problems have been corrected in Oracle Rdb Release 7.1.0.4. Please note that existing applications
(stored procedures, and compiled programs) will continue to function. However, when they are next compiled
(or created), this new error checking will be in effect.

4.2.2 Unexpected Error on FOR Loop With Dialect ORACLE
LEVEL1

In prior releases of Oracle Rdb, dynamic SQL would generate an error if a FOR loop was detected and the
dialect was set to ORACLE LEVEL1. The errors could occur for a stored procedure (part of a CREATE
MODULE statement) or a compound statement.

The following examples show these errors. The first error is shown for a dynamically executed compound
statement.

>> ATTACH 'filename DB$:SCRATCH'
>> SET DIALECT 'ORACLE LEVEL1'
>> SET FLAGS 'TRACE'
>> BEGIN FOR :C AS SELECT RDB$FLAGS FROM RDB$DATABASE DO TRACE :C.RDB$FLAGS;
END FOR; END
error: −1...
error text:
%SQL−F−DATTYPUNK, Data type unknown. Expression cannot use only host variables

Oracle® Rdb for OpenVMS

4.2.2 Unexpected Error on FOR Loop With Dialect ORACLE LEVEL1 71

The second error was generated from a compiled SQL$PRE application that included CREATE MODULE as
part of an EXEC SQL statement. The source of the CREATE MODULE is passed to dynamic SQL for
execution.

exec sql
 create module MYMOD
 language SQL
 procedure MYPROC (in :a integer);
 begin
 declare :b float = 0;
 for :c as select rdb$flags from rdb$database
 do
 trace :c.rdb$flags, :b, :a;
 end for;
 end;
 end module;

This runtime error is produced:

%SQL−F−DDLPARAM, You referred to parameter ? in a DDL statement

These errors occur because the FOR loop variable is erroneously assumed to be a parameter marker for
dynamic SQL.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. SQL now recognizes FOR loop variables as
well as routine parameters and declared variables and no longer assumes they are parameter markers.

4.2.3 Unexpected Truncation of Data Assigned in Precompiled
SQL

Bug 968518

In prior releases of Oracle Rdb, it was possible that multiple UPDATE or INSERT statements in the same
multistatement procedure using the same host−variable would assign truncated string values to some columns.

A SQL optimization tried to limit the passed data to that required by the column. For example, if the host
variable was longer than the target column, then data passed to the Rdb server was limited to the column
length (since it would be truncated during assignment anyway). If the same host variable was assigned to
columns of differing lengths then it was possible that the smaller length would be used for both assignments.

A workaround is to reorder the INSERT or UPDATE statements.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The SQL precompiler now ensures that the
larger target length is used for the assignment.

4.2.4 CREATE SEQUENCE Not Defaulting to WAIT

Bug 2325235

In prior releases of Oracle Rdb 7.1, the default mode of WAIT was not always applied to a new sequence. If
other attributes such as ORDER or NOORDER were used, the default of WAIT was not used.

Oracle® Rdb for OpenVMS

4.2.3 Unexpected Truncation of Data Assigned in Precompiled SQL 72

The following example shows this behavior.

SQL> create sequence id_sequence noorder nocache start with 215585;
SQL> show seq id_sequence
 ID_SEQUENCE
 Sequence Id: 6
 Initial Value: 215585
 Minimum Value: 1
 Maximum Value: 9223372036854775806
 Next Sequence Value: 215585
 Increment by: 1
 Cache Size: (Disabled)
 No Order
 No Cycle
 No Randomize
SQL>

The workaround for this problem is to explicitly use the WAIT clause.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. CREATE SEQUENCE will now default to
WAIT unless the syntax NOWAIT or DEFAULT WAIT is used.

4.2.5 Input Line Limit Too Low

Bug 679954

The limit on the length of an input or output line in SQL (interactive, precompiled, or module language) was
255 bytes. If a line longer than that was encountered, SQL issued a %SQL−F−LINETOOLONG error
message. The limit was a notable constraint with SQL$PRE/CC because certain OpenVMS header files
contain lines longer than 255 characters.

The following example shows the message displayed by SQL$PRE/CC when a C header file with a line
longer than 255 bytes was included:

$ sql$pre/cc/noobj test.sc
#include <string.h>
 1
%SQL−F−LINETOOLONG, (1) Input line was too long

The workaround for SQL$PRE/CC was to use a program called SQL_SPLIT.C to split long lines in C header
files. This program is delivered with Oracle Rdb in the sample directory.

The line length limit has now been extended to 32767 bytes. This is also the limit for a line in DEC C as well
as the maximum line length that can be handled by a TPU−based editor. The new, longer line limit applies to
SQL$PRE, interactive SQL, and SQL module language input files.

For interactive SQL, the increased line limit is most useful for input when you execute SQL script files. In a
terminal session, interactive SQL input is still subject to the size of the terminal buffer. That is, if you attempt
to type into a terminal session past the size of the terminal input buffer, the buffer is automatically terminated
as if you had hit the return key. A long line executed within a SQL script is not truncated in this way.

The characteristics of OpenVMS terminal I/O, including terminal buffer sizes, are described in the OpenVMS
I/O User's Reference Manual.

Oracle® Rdb for OpenVMS

4.2.5 Input Line Limit Too Low 73

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.6 CASE Expression Causes SQL Bugcheck
@SQL$$BLR_MSG_FIELD_REF + 1E8

Bug 1685140

A bugcheck could occur if you were processing an INSERT statement with a cross−database SELECT to
supply the values. If the SELECT LIST had a SEARCHED CASE expression for which all the THEN clauses
and the ELSE clause were built entirely from host variables or literals, the query would fail and generate a
SQL bugcheck dump.

The following example shows a query which fails due to this condition:

SQL> attach 'alias mfp filename disk$usr3:[user1]mf_personnel';
SQL> attach 'alias pers filename disk$usr3:[user2]personnel';
SQL> create table pers.salary_enties(
cont> employee_id PERS.ID_NUMBER,
cont> salary INTEGER(2),
cont> high_roller CHAR(1));
SQL> insert into pers.salary_entries(employee_id,salary,high_roller)
cont> select employee_id,
cont> (salary_amount*2)/1.999,
cont> (case when (salary_amount−10000) > 10000 then 'Y'
cont> else 'N' end) from mfp.salary_history;
%SQL−I−BUGCHKDMP, generating bugcheck dump file DISK$USR3:[USER1]SQLBUGCHK.DMP;

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.7 %SQL−F−INVFUNREF on Subquery of SELECT with
GROUP BY

A fatal error could occur if you were processing a SELECT statement with a subquery in the select list. If the
SELECT statement has a GROUP BY clause, then aggregate functions (e.g., COUNT) are not allowed in the
select list. This prohibition was erroneously being enforced for the subquery select list as well.

The following example shows a query which failed due to this condition:

SQL> attach 'filename personnel';
SQL> select employee_id,
cont> case (select count(*)
cont> from job_history jh
cont> where jh.employee_id = e.employee_id)
cont> when 3 then 'Old Timer'
cont> when 2 then 'Climber'
cont> when 1 then 'Newbie'
cont> else 'None'
cont> end
cont> from employees e
cont> where employee_id < '00166'
cont> group by employee_id,
cont> case (select count(*)
cont> from job_history jh
cont> where jh.employee_id = e.employee_id)

Oracle® Rdb for OpenVMS

4.2.6 CASE Expression Causes SQL Bugcheck @SQL$$BLR_MSG_FIELD_REF + 1E8 74

cont> when 3 then 'Old Timer'
cont> when 2 then 'Climber'
cont> when 1 then 'Newbie'
cont> else 'None'
cont> end
cont> ;
%SQL−F−INVFUNREF, Invalid function reference

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.8 Bugcheck on DDL Command With a Host Variable

In some cases, SQL would bugcheck when a DDL command in interactive SQL contained a host variable
which was not allowed in the context. It should have produced an error message. The SQLBUGCHK.DMP
contained the following:

SQL$BLRXPR − 15

The following commands were affected:

CREATE TABLE•
CREATE VIEW•
CREATE DOMAIN•
ALTER TABLE•

The following example illustrates the problem:

SQL> declare :x integer;
SQL> create table xxx (a computed by 1 + :x);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file RDBVMS_USER2:[USER1]SQLBUGCHK.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The following example shows the new
behavior:

SQL> declare :x integer;
SQL> create table xxx (a computed by 1 + :x);
%SQL−F−DDLPARAM, You referred to parameter X in a DDL statement

4.2.9 VALUE Keyword Not Recognized in DDL Statement

If a SQL module language procedure contained a DDL statement with the VALUE keyword, SQL$MOD
would not recognize it as the VALUE keyword.

The following example illustrates the problem.

SQL$MOD Program qar867.sqlmod:
MODULE VVVVVV
LANGUAGE GENERAL
PARAMETER COLONS
DECLARE ALIAS FOR FILENAME 'PERSONNEL'
PROCEDURE create_domain_v SQLCODE;
 create domain V
 as real

Oracle® Rdb for OpenVMS

4.2.8 Bugcheck on DDL Command With a Host Variable 75

 check (value > 0.0e0 and value is not null)
 not deferrable;

SQLMOD/noobj qar867.sqlmod
 check (value > 0.0e0 and value is not null)
 1
%SQL−F−FLDNOTCRS, (1) Column VALUE was not found in the tables in current scope
 as real
 check (value > 0.0e0 and value is not null)
 not deferrable;

SQLMOD/noobj qar867.sqlmod
 check (value > 0.0e0 and value is not null)
 1
%SQL−F−FLDNOTCRS, (1) Column VALUE was not found in the tables in current scope

The workaround is to use the name of the domain instead of the keyword VALUE.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.10 ALTER TABLE May Result in a Bugcheck at
RDMS$$COMPILE_RTN_EXPR

Bug 2468552

In prior releases of Oracle Rdb 7.1, it was possible for ALTER TABLE to bugcheck when stored functions
were referenced by more than one clause. The exception reported in the bugcheck dump is:

Exception occurred at RDMS$$COMPILE_RTN_EXPR + 00000588

%SYSTEM−F−ACCVIO, access violation

The following example shows the type of statement which may cause this error.

SQL> alter table SAMPLE
cont> alter column FACTOR
cont> default cast (FACTOR_OTHER() as D_MARGIN)
cont> add PRICE_CNT computed by PRICE_COUNT (SAMPLE.ISIN, 30);

To work around this problem, execute multiple ALTER TABLE statements.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. In addition, Oracle Rdb no longer calls the
function during data type validation for the DEFAULT value.

4.2.11 DROP VIEW Corrupts Base Table AUTOMATIC Columns

Bug 2432266

In prior releases of Rdb 7.1, view definitions incorrectly referenced AUTOMATIC columns in the base table.
These view definitions functioned correctly, but the dependencies between view and table were not managed
correctly.

The following reported problems have been corrected:

Oracle® Rdb for OpenVMS

4.2.10 ALTER TABLE May Result in a Bugcheck at RDMS$$COMPILE_RTN_EXPR 76

When an AUTOMATIC column was referenced in a view definition, the source domain was copied
from the table definition. Later when the view was dropped, the base domain definition (still in use by
the table) was also deleted which left the table definition corrupted.
DROP VIEW no longer deletes domains which are not especially created for the view itself. After the
upgrade to this release, existing view definitions referencing AUTOMATIC columns can be safely
dropped.
CREATE VIEW was incorrectly inheriting source domains for AUTOMATIC columns. This no
longer occurs in this release.

•

ALTER TABLE ... ADD COLUMN now evaluates the AUTOMATIC INSERT AS and
AUTOMATIC AS expressions and applies those values to any existing rows in the table.

•

When an AUTOMATIC UPDATE AS column was added to a table and that column also provided a
DEFAULT value, then Rdb was not applying that DEFAULT to any existing rows in the table.

•

This problem has been corrected in Oracle Rdb Release 7.1.0.4. Existing tables and views that use
AUTOMATIC columns will continue to function correctly. However, if a DROP VIEW has been executed
leaving the table metadata corrupted, then Oracle Corporation recommends that the views be dropped and the
AUTOMATIC column be redefined (using ALTER TABLE ... ADD COLUMN). The views can then be
redefined.

4.2.12 RDB−E−BAD_REQ_HANDLE in Stored Function

Bug 2391734

A stored function called in a WHERE clause which includes an OR or IN predicate could fail with the error
%RDB−F−RTN_FAIL, routine "(unknown)" failed to compile or execute successfully.

The following example shows the problem:

function YESTERDAY ()
RETURNS DATE VMS not variant;
 BEGIN
 RETURN CAST (CURRENT_DATE − INTERVAL '1' DAY AS DATE VMS);
 END;

SQL> select EMPLOYEE_ID from SALARY_HISTORY
cont> where (EMPLOYEE_ID = '00416' or EMPLOYEE_ID = '00471') and
cont> SALARY_START >= yesterday();
%RDB−F−RTN_FAIL, routine "(unknown)" failed to compile or execute successfully
−RDB−E−BAD_REQ_HANDLE, invalid request handle

A possible workaround to this problem would be to force the function to be loaded into memory by executing
it ahead of time. For example:

SQL> begin
cont> declare :x date vms;
cont> set :x = yesterday ();
cont> end;
SQL>
SQL> select EMPLOYEE_ID from SALARY_HISTORY
cont> where (EMPLOYEE_ID = '00416' or EMPLOYEE_ID = '00471') and
cont> SALARY_START >= yesterday();
0 rows selected

Oracle® Rdb for OpenVMS

4.2.12 RDB−E−BAD_REQ_HANDLE in Stored Function 77

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.13 Unexpected SEQNONEXT Error When Using Sequences

Bug 2079129

In prior releases of Rdb 7.1, reference to a sequence from ODBC, SQL*Net for Rdb, Rdb Web Agent, or
SQL/Services would fail with the error:

%RDB−E−SEQNONEXT, The next value for the sequence "sequence−name" is not
available

The following example uses the Rdb Web Agent to show the problem:

Rdb returned an error
%RDB−E−SEQNONEXT, The next value for the sequence "CNG_WORK_ID" is not
available
sts [16] from exe_statement is 1 call submit_work (?,?,?,?,?,?,?,?,?)

The following example uses a similar call from ODBC:

SQLSTATE: S1000
Native Error Code: −1
Driver Message: [Oracle][ODBC][Rdb]%RDB−E−SEQNONEXT, The next value for
the sequence "CNG_WORK_ID" is not available

This problem occurred if you used the SET statement to assign the sequence NEXTVAL. Oracle Rdb was not
correctly executing the NEXTVAL reference in a reusable transaction server environment. This problem only
affected standalone SET assignments such as that shown in this procedure:

begin
declare :status integer;
declare :id bigint;

call work_web_open ('Work Form', 'Work Form Submission', NULL);
set :id = cng_work_id.nextval;
call htp_print ('id=' || cast(:id as varchar(10)));
call work_web_close ();
end;

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.14 Sequence Does Not Increase When Used in SELECT ...
INTO

Bug 2443848

In prior releases of Rdb 7.1, reference to a sequence in a non−compound singleton SELECT statement (i.e.,
SELECT ... INTO) did not cause the sequence to increment.

SQL> select ssss.nextval from rdb$database;

 1181

Oracle® Rdb for OpenVMS

4.2.13 Unexpected SEQNONEXT Error When Using Sequences 78

1 row selected
SQL> declare :val bigint;
SQL> select ssss.nextval into :val from rdb$database;
SQL> print :val;
 VAL
 1181

This problem can be avoided by enclosing the SELECT statement in a BEGIN/END compound statement, or
by using a simple and direct SET statement.

SQL> begin
cont> set :val = ssss.nextval;
cont> end;
SQL> print :val;
 VAL
 1182

Oracle Corporation recommends that you use the SET statement because it does not require a row access to
cause the NEXTVAL to be incremented.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.15 AUTOMATIC Columns Can Now Reference Other
Columns

Bugs 2447859 and 2432366

In prior releases of Rdb 7.1, an AUTOMATIC column could not reference other columns of the current table.
This restriction was in place to prevent access to columns which had not yet been assigned values, such as
those that inherited DEFAULT values, or appeared later in the INSERT column list.

This restriction has now been lifted in Oracle Rdb Release 7.1.0.4. Oracle Rdb now reorders the column
assignments for INSERT so that AUTOMATIC columns can reference any previously defined column on the
table. This includes COMPUTED BY columns and columns that are assigned DEFAULT values.

4.2.16 SET NO EXECUTE Permits More SHOW and SET
Statements

Enhancement 1766086

The SET NO EXECUTE statement no longer disables the SET and SHOW statements during an interactive
session. In particular, this change allows the SET FLAGS and SET OUTPUT statements to be used even
when execution is disabled. For instance, the SET FLAGS statement is used below to control the output from
a sample query compile and is shown in this example:

SQL> set no execute;
SQL> set flags 'outline';
SQL> select count (*) from employees;
−− Rdb Generated Outline : 7−JUN−2002 11:23
create outline QO_B3F54F772CC05435_00000000
id 'B3F54F772CC054350B2B454D95537995'
mode 0

Oracle® Rdb for OpenVMS

4.2.15 AUTOMATIC Columns Can Now Reference Other Columns 79

as (
 query (
−− For loop
 subquery (
 subquery (
 EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)
)
)
)
compliance optional ;
0 rows selected
SQL> set flags 'nooutline';
SQL> set execute;

The exception is the SET TRANSACTION statement which is not executed when SET NO EXECUTE is
active. Start or declare a transaction prior to using SET NO EXECUTE.

This change is included in Oracle Rdb Release 7.1.0.4.

4.2.17 CAST Function Enhanced for Single Field INTERVAL
Types

Enhancement 2363281

In prior versions of Rdb, attempts to CAST a single field INTERVAL data type to a numeric type would
cause an error. The supported method was to use the EXTRACT function to fetch the value as an integer.

The following example shows this error:

SQL> select cast(interval'99'year as real)
cont> from rdb$database;
%SQL−F−UNSDATASS, Unsupported date/time assignment from <value
expression> to <cast type>
SQL>
SQL> select cast(extract (year from interval'99'year) as real)
cont> from rdb$database;
 9.9000000E+01
1 row selected
SQL>

Because this error was confusing, SQL was enhanced to implicitly perform the EXTRACT for single field
intervals. This is the new result for Oracle Rdb Release 7.1.0.4:

SQL> select cast(interval'99'year as real)
cont> from rdb$database;

 9.9000000E+01
1 row selected

4.2.18 Unexpected INVALID_BLR Error During CREATE
MODULE

Oracle® Rdb for OpenVMS

4.2.17 CAST Function Enhanced for Single Field INTERVAL Types 80

Bug 2255376

In prior releases of Rdb, the CREATE MODULE statement might fail with an INVALID_BLR error, such as
that shown below:

%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−INVALID_BLR, request BLR is incorrect at offset 24282

This error occurred because one of the routines in the module contained too many table references. Oracle
Rdb currently limits stored routines to 255 table references.

A table reference can be a table, view, or derived table in a FROM clause of a SELECT statement, a table
referenced in an INSERT statement, or UPDATE statement. Note that UPDATE uses two table references;
one for the old row and one for the new row.

This condition is now detected by SQL and the following error is produced:

%SQL−F−QUETOOBIG, Query or routine contains too many table references

If this error occurs, then the procedure must be modified to simplify the SQL statements. You can use a FOR
loop with multiple actions instead of multiple updates, perform actions once and save intermediate results in
local variables, or place code in a separate routine and use the CALL statement to execute that part of the
program.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.19 Unexpected DEFVALINC Error When Using ALTER
DOMAIN

Bug 2504067

In prior versions of Rdb, it was possible for ALTER DOMAIN to fail when modifying the domain attributes.
This error arose due to an unneeded check on the data type of the DEFAULT value.

The following example shows the erroneous result when using DROP ALL CONSTRAINTS.

SQL> create domain D1 tinyint
cont> default 1
cont> check (value between 0 and 4 and value is not null)
cont> not deferrable;
SQL>
SQL> alter domain D1 drop all constraints;
%SQL−F−DEFVALINC, You specified a default value for D1 which is inconsistent
with its data type
−COSI−F−INTOVF, integer overflow

This problem has been corrected in Oracle Rdb Release 7.1.0.4. SQL no longer attempts to validate the
DEFAULT expression unless the data type is changed by the ALTER DOMAIN statement.

Oracle® Rdb for OpenVMS

4.2.19 Unexpected DEFVALINC Error When Using ALTER DOMAIN 81

4.2.20 Unexpected UNRES_REL Error When DEFAULT Value
References Table

Bugs 2496904 and 2523399

In prior releases of Oracle Rdb 7.1, a DEFAULT value which referenced another table would fail if that table
was not listed with other tables in the RESERVING clause of the SET or DECLARE TRANSACTION
statement.

The following example shows the failure.

SQL> create table CITY
cont> (c_name char(100),
cont> c_id integer);
SQL>
SQL> insert into CITY values ('Sydney', 1);
1 row inserted
SQL>
SQL> create table SUBURB
cont> (s_name char(100),
cont> s_id integer
cont> default (select c_id from CITY where c_name = s_name));
SQL>
SQL> commit;
SQL>
SQL> set transaction
cont> read write
cont> reserving SUBURB for shared write;
SQL>
SQL> insert into SUBURB (s_name) values ('Sydney');
%RDB−E−UNRES_REL, relation CITY in specified request is not
a relation reserved in specified transaction
SQL>

Since this is a metadata reference, the database programmer does not need to list these tables. This problem
has been corrected in Oracle Rdb Release 7.1.0.4. Oracle Rdb now automatically reserves these referenced
tables for SHARED READ.

Note

If the default behavior uses SQL functions to access tables, then those tables should be
explicitly locked within the function or nested called procedures using the LOCK TABLE
statement within the function. This release of Rdb allows LOCK TABLE to appear in a
SQL function definition.

4.2.21 Restricted Range Index Not Detecting Out−of−Range
Values

Bug 413410

In prior releases of Oracle Rdb, an index with no OTHERWISE clause and a single partition was not detecting

Oracle® Rdb for OpenVMS

4.2.20 Unexpected UNRES_REL Error When DEFAULT Value References Table 82

out of range values. This problem has been corrected in Oracle Rdb Release 7.1.0.4.

The following example shows the corrected behavior.

SQL> create table PTABLE (
cont> NR
cont> INTEGER,
cont> A
cont> CHAR (2));
SQL>
SQL> create index NR_IDX
cont> on PTABLE (
cont> NR)
cont> type is HASHED
cont> store using (NR)
cont> in EMPIDS_LOW
cont> with limit of (10);
SQL>
SQL> create storage map PTABLE_MAP
cont> for PTABLE
cont> store in EMP_INFO;
SQL>
SQL> insert into PTABLE values (100, 'A');
%RDMS−E−EXCMAPLIMIT, exceeded limit on last partition in storage map for NR_IDX
SQL>

4.2.22 Unexpected NODBKDRVTBL Error When Fetching DBKEY
From a Table

In prior versions of Oracle Rdb, references to DBKEY for any table joined with a derived table (a table
expression) would generate the unexpected error NODBKDRVTBL. If the reference was to a base table or
view, then this should have been a legal statement.

The following example shows that the error is unexpected because the DBKEY is fetched from the
RDB$TRIGGERS table and not the derived table.

SQL> select t.dbkey
cont> from (select rdb$relation_name
cont> from rdb$relations
cont> where rdb$relation_name = 'EMPLOYEES') as rn,
cont> rdb$triggers t
cont> where rn.rdb$relation_name = t.rdb$relation_name;
%SQL−F−NODBKDRVTBL, DBKEY can't be returned for a derived−table
SQL>

This problem has been corrected in Oracle Rdb Release 7.1.0.4. SQL now performs additional checks before
reporting this error.

4.2.23 Function Reference Causes Exception

Bug 2542212

An exception could occur if you were processing a SELECT statement which referenced a function in a stored

Oracle® Rdb for OpenVMS

4.2.22 Unexpected NODBKDRVTBL Error When Fetching DBKEY From a Table 83

module and involved an aggregate function. Such a query would fail and generate a SQL Bugcheck dump.

The following example shows a query which fails due to this condition:

$ SQL$
SQL> create data file tstdb;
SQL> create module M
SQL> language SQL
SQL> function POWER
cont> (in :a double precision,
cont> in :b integer)
cont> returns double precision;
cont> return null;
cont> end module;
SQL> commit;
SQL> create table t1 (c1 int);
SQL> commit;
SQL> select nvl(sum(c1 * power(10 , 2)) , 0) from t1;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file MY_DISK:[MYDIR]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=00000000000

The SQLBUGCHK.DMP for the above example has the following entry:

***** Exception at 002B17F7 : SQL$$GET_QUEUE_WALK + 000001B1
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=00000080, P

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.24 SQL Precompiler Bugchecks on ALTER

Bug 2524162

If an EXEC SQL statement in a precompiled program contained an ALTER TRIGGER, the precompiler
would fail and generate a SQL Bugcheck dump. Though not reported by the related Bug report, processing of
ALTER CONSTRAINT caused the same error.

The following example shows a precompiled C program which fails due to this condition:

$create alter_trigger.sc
EXEC SQL INCLUDE SQLCA;
int main()
{ EXEC SQL ALTER TRIGGER TRG_T_INS ENABLE; return 0;}
$sql create database filename test;
$define sql$database test
sqlpre/cc alter_trigger
%RDMS−I−BUGCHKDMP, generating bugcheck dump file MY_DISK:[MYDIR]SQLBUGCHK.DMP;

The SQLBUGCHK.DMP for the above example has the following entry:

***** Exception at 00A016D4 : XSQL$$GEN_PROCEDURE + 00003FF4
%SQL−F−BUGCHK, There has been a fatal error. Please contact your Oracle support
 representative

As a workaround, use embedded SQL instead of precompiled SQL. For example, the program in the previous
example can be modified to submit the ALTER TRIGGER as follows:

Oracle® Rdb for OpenVMS

4.2.24 SQL Precompiler Bugchecks on ALTER 84

EXEC SQL EXECUTE IMMEDIATE 'ALTER TRIGGER TRG_T_INS ENABLE';

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.25 Bugcheck at RDMS$$COMPILE_FOR_IF for Aggregate
Queries

Bug 2556747

In Oracle Rdb Release 7.1.0.3 it was possible, in rare cases, for a bugcheck to occur when a query used an
aggregate function with a COALESCE, NULLIF, NVL or simple case expression.

***** Exception at 07709DFC : RDMS$$COMPILE_FOR_IF + 00002F04
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000014CF201C, PC=0000000007709DFC, PS=0000000B

The following example shows the type of query which might cause this problem. However, the conditions for
the bugcheck are related to memory allocation and this problem was rarely seen.

SQL> declare :x integer;
SQL> select coalesce (sum (salary_amount), 0)
cont> into :x
cont> from salary_history
cont> where salary_end is null;

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.26 Unexpected INVALID_BLR When Using Variable CHECK
Clause

Bug 2421451

When the CHECK clause is used for a declared variable in a compound statement, the variable must be
assigned a default value using the DEFAULT clause. In prior versions of Oracle Rdb 7.1, SQL did not
diagnose the semantic error; it was detected at runtime by the Rdb Server.

The following example shows the error reported by the Rdb Server.

SQL> begin
cont> declare :g char (1) check (value in ('A','B')) not deferrable;
cont> set :g = 'C';
cont> trace 'var is ', :g;
cont> end;
%RDB−E−INVALID_BLR, request BLR is incorrect at offset 50

This problem has been corrected in Oracle Rdb Release 7.1.0.4. SQL now generates this error during the
compile of the SQL statement.

SQL> begin
cont> declare :g char (1) check (value in ('A','B')) not deferrable;
cont> set :g = 'C';
cont> trace 'var is ', :g;

Oracle® Rdb for OpenVMS

4.2.25 Bugcheck at RDMS$$COMPILE_FOR_IF for Aggregate Queries 85

cont> end;
%SQL−F−MSP_NODEFAULT, DEFAULT clause required for variable "G" − CONSTANT or
CHECK clause used

4.2.27 Unexpected OBSOLETE_METADA When Accessing Older
Rdb Version

In prior versions of Oracle Rdb 7.1, it was possible to receive an OBSOLETE_METADA error when you
tried to create or alter a routine in a older Rdb version using SQL V7.1.

The following example shows a session connected to a V7.0 database via remote Rdb.

SQL> SHOW VERSION
Current version of SQL is: Oracle Rdb SQL V7.1−02
Underlying versions are:
 Database with filename MF_PERSONNEL
 Oracle Rdb V7.0−62
 Rdb/Dispatch V7.0−62 (OpenVMS AXP)
 Remote Server V7.0−62 (OpenVMS AXP)
 Remote Client V7.1−02 (OpenVMS Alpha)
 Rdb/Dispatch V7.1−02 (OpenVMS Alpha)
SQL>
SQL> create module foo language sql
cont> procedure fee();
cont> trace 'in FEE';
cont> end module;
%RDB−F−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−F−BAD_SYM, unknown field symbol − RDB$MIN_PARAMETER_COUNT

This error occurs because this system table column, RDB$MIN_PARAMETER_COUNT, did not exist in
prior versions.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. SQL now detects that an older version of Rdb
is being accessed and uses an alternate query to read the metadata.

4.2.28 IMPORT Did Not Create Objects with Function References

Bugs 716044, 520651, and 2523346

In previous versions of Oracle Rdb, it was possible to create objects that referenced functions that could not
be imported using SQL IMPORT. These objects could not be exported and then imported because of the order
of CREATE statements performed by SQL IMPORT.

For example, IMPORT creates domains before it creates external functions. This allows the function to
reference the domain as part of the parameter definitions. Likewise, tables are imported before modules,
allowing modules to reference these tables in queries. This very strict ordering made it impossible to IMPORT
some complex databases which used functions in DEFAULT clauses, constraints, triggers, and view
definitions.

Note

Oracle® Rdb for OpenVMS

4.2.27 Unexpected OBSOLETE_METADA When Accessing Older Rdb Version 86

This problem included databases which are configured for SQL*Net for Rdb and contained
routine and view definitions that reference functions.

In addition, this problem was compounded when objects had cyclic dependencies created using the ALTER
statement as shown in the following example:

SQL> create domain D integer;
SQL> create function F (in :a D) returns D;
cont> external language GENERAL
cont> parameter style GENERAL;
SQL> alter domain D default F(100);

Now the domain D references the function F and the function F requires the domain D. It does not matter in
which order the objects are created; there is always a dependency. The following partial output from IMPORT
shows the types of errors generated for this database.

SQL> IMPORT DATABASE FROM saved FILENAME sample;
Exported by Oracle Rdb V7.1−03 Import/Export utility
A component of Oracle Rdb SQL V7.1−03
Previous name was OLD_SAMPLE
...
IMPORTing STORAGE AREA: RDB$SYSTEM
%SQL−F−NOFLDRES, unable to import domain D
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−DEFINCDOM, DEFAULT is incompatible with datatype of domain "D"
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
IMPORTing External Routine F
%SQL−F−NORTNRES, unable to import routine F
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−GFLDNOEX, there is not a global field named D in this database
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−E−RTNNEXTS, routine F does not exist in this database

This problem has been corrected in Oracle Rdb Release 7.1.0.4. Now SQL EXPORT saves the dependency
information for routines as a part of the interchange file (RBR) and IMPORT issues DECLARE FUNCTION
and DECLARE PROCEDURE statements prior to importing objects.

The DECLARE statement for routines provides a function or procedure prototype that can be used by the Rdb
Server to validate the routine references and parameter data types. These declared routines cannot be executed
and require a subsequent CREATE statement to make permanent definitions in the database.

Note

As referenced elsewhere in these release notes, dependency information for domain
CHECK constraints and DEFAULT clauses were not recorded by Oracle Rdb in previous
releases. If these definitions contained references to functions, then it is possible for
EXPORT to omit a DECLARE FUNCTION statement and so cause the IMPORT to fail.
Please contact Oracle Support if you should encounter this problem.

A new FORWARD_REFERENCES option has been added to both EXPORT and IMPORT DATABASE
statements. If the interchange file is being used by a previous version of Oracle Rdb 7.1, then the NO
FORWARD_REFERENCES clause should be used on EXPORT to prevent the dependency information
being exported. In addition, the dependency information in the interchange file can be ignored by Rdb Release
7.1.0.4 and later versions using the NO FORWARD_REFERENCES clause of the IMPORT DATABASE

Oracle® Rdb for OpenVMS

4.2.27 Unexpected OBSOLETE_METADA When Accessing Older Rdb Version 87

statement.

4.2.29 Unexpected Table References From FOR Cursor Query

In previous versions of Oracle Rdb, references to FOR cursor select expressions may show additional table
references in the optimizer query strategy.

The following example shows this problem:

SQL> set flags 'TRACE,STRATEGY';
SQL> declare :row_count integer;
SQL>
SQL> begin
cont> for :a as each row of
cont> select employee_id
cont> ,last_name
cont> ,first_name
cont> ,(select max(SALARY_START)
cont> from salary_history sh
cont> where sh.employee_id = e.employee_id
cont>) as max_salary_start
cont> ,(select max(SALARY_START)
cont> from salary_history sh
cont> where sh.employee_id = e.employee_id
cont> and salary_end is null
cont>) max_curr_salary_start
cont> from employees e
cont> do
cont> set :row_count = :row_count + 1;
cont> if (:a.max_salary_start <> :a.max_curr_salary_start)
cont> then
cont> trace :a.employee_id, :a.last_name, :a.first_name,
cont> :a.max_salary_start, :a.max_curr_salary_start;
cont> end if;
cont> end for;
cont> end;
Cross block of 2 entries
 Cross block entry 1
 Aggregate
 Leaf#01 BgrOnly SALARY_HISTORY Card=729
 BgrNdx1 SH_EMPLOYEE_ID [0:0] Bool Fan=17
 Cross block entry 2
 Aggregate
 Leaf#02 BgrOnly SALARY_HISTORY Card=729
 BgrNdx1 SH_EMPLOYEE_ID [0:0] Bool Fan=17
Cross block of 2 entries
 Cross block entry 1
 Aggregate
 Leaf#01 BgrOnly SALARY_HISTORY Card=729
 BgrNdx1 SH_EMPLOYEE_ID [0:0] Bool Fan=17
 Cross block entry 2
 Aggregate
 Leaf#02 BgrOnly SALARY_HISTORY Card=729
 BgrNdx1 SH_EMPLOYEE_ID [0:0] Bool Fan=17
Get Retrieval sequentially of relation EMPLOYEES
SQL>

Oracle® Rdb for OpenVMS

4.2.29 Unexpected Table References From FOR Cursor Query 88

Here the strategy report shows that there were extra table references (the table SALARY_HISTORY is
referenced four times) yet that table was only referenced twice in the FOR select expression.

These extra table references occur due to the way SQL materializes the expression references in the body of
the FOR loop. For example, each reference to :A.MAX_SALARY_START is expanded to include the full
subselect. If the select expression is referenced many times, then the strategy can become more complex.

As a workaround to this problem, the expressions can be moved into the loop body and assigned to local
variables so that it is evaluated only once. This is shown in a modified version of the example.

SQL> set flags 'TRACE,STRATEGY';
SQL> declare :row_count integer;
SQL>
SQL> begin
cont> for :a as each row of
cont> select employee_id
cont> ,last_name
cont> ,first_name
cont> from employees e
cont> do
cont> begin
cont> declare :max_salary_start date =
cont> (select max(SALARY_START)
cont> from salary_history sh
cont> where sh.employee_id = :a.employee_id);
cont> declare :max_curr_salary_start date =
cont> (select max(SALARY_START)
cont> from salary_history sh
cont> where sh.employee_id = :a.employee_id
cont> and salary_end is null);
cont>
cont> set :row_count = :row_count + 1;
cont> if (:max_salary_start <> :max_curr_salary_start)
cont> then
cont> trace :a.employee_id, :a.last_name, :a.first_name,
cont> :max_salary_start, :max_curr_salary_start;
cont> end if;
cont> end;
cont> end for;
cont> end;
Aggregate
Leaf#01 BgrOnly SALARY_HISTORY Card=729
 BgrNdx1 SH_EMPLOYEE_ID [1:1] Fan=17
Aggregate
Leaf#01 BgrOnly SALARY_HISTORY Card=729
 BgrNdx1 SH_EMPLOYEE_ID [1:1] Fan=17
Index only retrieval of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]

This problem has been corrected in Oracle Rdb Release 7.1.0.4. SQL now automatically assigns expressions
such as those used here to local variables to eliminate these extra table references from the optimizer strategy.

Note

Generally this problem is not significant for application performance. However, if you wish
to gain the advantage of this optimization, applications compiled with the SQL precompiler
or SQL module language compiler will need to be recompiled after this release is installed.

Oracle® Rdb for OpenVMS

4.2.29 Unexpected Table References From FOR Cursor Query 89

Any stored modules that use FOR loops will likewise need to be dropped and recreated. In
addition, changes in the query strategy will prevent query outlines from being applied to
stored procedures or compound statements that use FOR cursor loops. The affected query
outlines should be dropped and recreated.

4.2.30 Additional Warnings Generated for ALTER INDEX

Bug 2396251

The operation ALTER INDEX ... TRUNCATE PARTITION <partname> operates on a single partition of the
index. When complete, the index is left in build−pending state since not all of the index is available. A final
ALTER INDEX ... MAINTENANCE IS ENABLED statement must be used to make the index usable. With
this release of Rdb, 7.1.0.4, a warning is generated in interactive SQL to remind the database administrator
that the index is incomplete.

The following example shows this for the MF_PERSONNEL database.

SQL> show index (partition) EMPLOYEES_HASH
Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
 No Duplicates allowed
 Type is Hashed Scattered
 Key suffix compression is DISABLED

 Partition information for index:
 Partition: (1) SYS_P00076
 Storage Area: EMPIDS_LOW
 Partition: (2) SYS_P00077
 Storage Area: EMPIDS_MID
 Partition: (3) SYS_P00078
 Storage Area: EMPIDS_OVER
SQL> alter index employees_hash truncate partition SYS_P00077;
%RDB−W−META_WARN, metadata successfully updated with the reported warning
−RDMS−W−IDXBLDPEND, index in build pending state − maintenance is disabled
SQL> insert into employees default values;
%RDB−E−READ_ONLY_REL, relation EMPLOYEES was reserved for read access; updates
not allowed
−RDMS−F−BUILDPENDING, index in build pending state − operation not permitted

Until the index is made complete, it will not be used by the query optimizer nor can the table on which it is
defined be updated. The SHOW INDEX command reports this state.

SQL> show index employees_hash
Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
 No Duplicates allowed
 Type is Hashed Scattered
 Key suffix compression is DISABLED

Maintenance is Deferred − build pending

Oracle® Rdb for OpenVMS

4.2.30 Additional Warnings Generated for ALTER INDEX 90

4.2.31 ALTER INDEX Would Report Unexpected
OBSOLETE_METADA Error

In previous versions of Oracle Rdb 7.1, attempts to TRUNCATE a partition of any index used as a
PLACEMENT VIA INDEX in a storage map would fail with an OBSOLETE_METADA error.

The following example shows this for the MF_PERSONNEL database.

SQL> alter index employees_hash truncate partition SYS_P00077;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer
exist
−RDMS−F−BAD_SYM, unknown index symbol − EMPLOYEES_HASH

This problem has been corrected in Oracle Rdb Release 7.1.0.4. Rdb no longer loads the PLACEMENT VIA
INDEX when there is an index on the table in build−pending state.

4.2.32 SELECT DISTINCT Returns Incorrect Value for NEXTVAL

Bug 2489394

In prior releases of Oracle Rdb 7.1, references to a sequence NEXTVAL in a DISTINCT clause would cause
the current value (CURRVAL) to be returned instead of the next value. However, the sequence would be
incremented as shown in the following example.

SQL> create sequence seq_no;
SQL>
SQL> select seq_no.nextval from rdb$database;

 1
1 row selected
SQL> select seq_no.currval from rdb$database;

 1
1 row selected
SQL> select distinct seq_no.nextval from rdb$database;

 1
1 row selected
SQL> select seq_no.currval from rdb$database;

 2
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The Rdb server now correctly processes
NEXTVAL in this context.

4.2.33 Unexpected Trailing Character in SMALLINT Display

Bug 2598310

In prior versions of Oracle Rdb, it was possible for SQL to return a numeric value with an unexpected trailing
character. The following example shows that when a SMALLINT value is converted to VARCHAR, an extra

Oracle® Rdb for OpenVMS

4.2.31 ALTER INDEX Would Report Unexpected OBSOLETE_METADA Error 91

character is appended to the end. The period (.) in the example is actually an unprintable character masked by
the TRACE statement.

SQL> set dialect 'sql92';
SQL> set flags 'trace';
SQL>
SQL> declare :v varchar(30);
SQL>
SQL> begin
cont> set :v = cast(−11111 as smallint);
cont> trace char_length(:v), '<' || :v || '>';
cont> end;
~Xt: 7 <−11111.>

This problem only occurs if the dialect is set to SQL92, SQL99 or ORACLE LEVEL1 and is a side effect of
the test for string truncation. Negative values with digits filled may have this problem. Positive values or
numbers with less than 5 digits do not exhibit this behavior.

This problem may cause tools such as SQL*Plus, that use SQL*net for Rdb, to fail to display the value
returned. A possible workaround is to change the data type of the column to INTEGER or add a CAST (... AS
INTEGER) to the select list of the query.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.34 DEFAULT Value With Subselect Not Evaluated Correctly

Bug 2519020

In prior releases of Oracle Rdb V7.1, any DEFAULT value that contained a subselect would return the
incorrect value. The problem was caused by evaluating the subselect after the row was populated. This
problem has been corrected in Oracle Rdb Release 7.1.0.4.

Restriction

Rdb now always evaluates subqueries prior to storing values in the target table. Therefore, any subselect
which relies on values within the inserted row will be rejected by Rdb during CREATE and ALTER TABLE.

SQL> alter table NEW_EMP
cont> alter column STARTING_SALARY
cont> set default
cont> −− default to average in the department
cont> cast (
cont> (select avg (SALARY_AMOUNT)
cont> from SALARY_HISTORY
cont> where exists
cont> (select EMPLOYEE_ID
cont> from JOB_HISTORY
cont> where DEPARTMENT_CODE = NEW_EMP.department_code))
cont> as integer(2));
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−INSNOREAD, cannot read column "DEPARTMENT_CODE" from target row during
INSERT

If any such DEFAULT values were defined with prior releases of Oracle Rdb V7.1, they must be replaced

Oracle® Rdb for OpenVMS

4.2.34 DEFAULT Value With Subselect Not Evaluated Correctly 92

with alternate DEFAULT definitions.

An alternative is to create a SQL function that evaluates the subselect and references that as the DEFAULT as
shown in the following example:

SQL> create module EMP_DEFAULTS
cont> function DEFAULT_SALARY (in :dept_code char(4))
cont> returns MONEY
cont> comment is 'Derive average salary in department';
cont> return (select avg (SALARY_AMOUNT)
cont> from SALARY_HISTORY
cont> where exists
cont> (select EMPLOYEE_ID
cont> from JOB_HISTORY
cont> where DEPARTMENT_CODE = :dept_code));
cont> end module;
SQL>
SQL> alter table NEW_EMP
cont> alter column STARTING_SALARY
cont> set default
cont> −− default to average in the department
cont> DEFAULT_SALARY (NEW_EMP.department_code);

4.2.35 DROP SEQUENCE Bugchecks in Routine AIJ$JOURNAL

Bug 2567713

When after image journaling was enabled, the COMMIT of a DROP SEQUENCE statement would bugcheck
with these characteristics:

COSI−F−BUGCHECK, internal consistency failure•
Exception occurred at AIJ$JOURNAL + 00000B14•
Called from SEQ$DELETE_SEQUENCE + 0000035C•
Called from RDMS$$DO_CJ_QUEUE + 00000234•

This problem occurred in Oracle Rdb Release 7.1.0.2 and Release 7.1.0.3. This problem has now been
corrected in Oracle Rdb Release 7.1.0.4. The only workaround to this problem is to disable journaling on the
database while the DROP SEQUENCE statement is committed.

4.2.36 DECLARE TRANSACTION Causes Memory Leak

Bug 2247160

In prior releases of Oracle Rdb, the DECLARE TRANSACTION statement would leak small amounts of
virtual memory. Normally, this was not significant because the statement would be executed once per session.
However, for client software such as ODBC, it may be executed many times while the SQL/Services server is
active. This can lead to an out of virtual memory condition and a failure of the server.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.2.35 DROP SEQUENCE Bugchecks in Routine AIJ$JOURNAL 93

4.2.37 Restrictions Lifted for DROP and ALTER TABLE for
Temporary Tables

Bug 1671643

The Oracle Rdb SQL Reference Manual, CREATE TABLE section lists these restrictions for temporary
tables.

You cannot alter a temporary table. To alter a global or local temporary table, you must delete the
table and create it again.
This restriction has been lifted. You may alter a temporary table to add, drop or alter columns. Some
restrictions exist for materialized local temporary tables, i.e. those which contain module scoped data.

•

You can enable and disable compression on a temporary table only prior to inserting any data into the
table.
This restriction has been lifted. You may use ALTER STORAGE MAP to change the compression for
the temporary table. Some restrictions exist for materialized local temporary tables, i.e. those which
contain module scoped data.

•

You cannot specify a global or local temporary table in the reserving clause of a SET
TRANSACTION statement.
This restriction has been lifted. The temporary table is now ignored if it appears in the DECLARE or
SET TRANSACTION statements RESERVING clause, or within a LOCK TABLE statement.

•

When deleting and creating temporary tables using the same table name, you must commit the delete
operation before starting the create operation.
This restriction has been lifted. You may now drop and re−create a table with the same name as a
dropped temporary table within a single transaction.

•

These restrictions have been lifted in Oracle Rdb Release 7.1.0.4.

4.2.38 Object Dependencies Not Tracked for Domains or
Complex DEFAULT Clauses

In prior releases of Oracle Rdb 7.1, dependency information was not recorded for domains which referenced
routines or tables in a subselect within DEFAULT or CHECK constraint expressions. Similarly, columns
which inherited the DEFAULT and CHECK constraint from a domain or explicitly created a DEFAULT did
not have these dependencies recorded in the RDB$INTERRELATIONS system table.

The impact of this problem is that RESTRICT operations of DROP FUNCTION, DROP PROCEDURE,
DROP MODULE and ALTER/DROP TABLE may succeed and not warn the database administrator that
these dependencies exist.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. As new domains and columns are added, Rdb
now manages the dependencies for these objects.

To correct this problem, the database administrator will need to alter any affected domains and columns and
re−define the DEFAULT and CHECK constraints. These will automatically be propagated to the referencing
table columns. The dependencies will be stored as part of this operation.

Oracle® Rdb for OpenVMS

4.2.37 Restrictions Lifted for DROP and ALTER TABLE for Temporary Tables 94

4.2.39 SET LINE LENGTH Changed Upper Limit

Bug 2645018

In the prior releases of Oracle Rdb, the SET LINE LENGTH upper limit was restricted to 512 octets. This is
incorrect and should have been 65535 octets.

The following example shows the error that is issued on what was formerly a legal command in interactive
SQL.

SQL> set line length 513;
%SQL−F−INVRNG, Invalid range. You specified 513. Valid range is from 10 to 512

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The upper limit for SET LINE LENGTH is
now 65535 octets, the maximum allowed by OpenVMS Record Management Services (RMS).

4.2.40 DROP SEQUENCE Not Synchronized With Other Sessions

Bug 2659945

In previous versions of Oracle Rdb V7.1, it was possible to use DROP SEQUENCE on a sequence currently
in use by another session. This behaviour was incorrect and should have generated a wait or an error.

The following example shows the correctly reported error when WAIT with timeout is used.

SQL> set transaction read write wait 10;
SQL> drop seq ANYWAREHOUSE_SEQ;
%RDB−E−LOCK_CONFLICT, request failed due to locked resource
−RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−TIMEOUT, timeout on client '........ANYW' 57594E41000000010000001900000055
−COSI−W−CANCEL, operation canceled
SQL>

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.2.41 Compiled Applications May Fail With SQLCODE −304

Bug 2661656

Applications compiled with SQL$PRE or SQL$MOD under Rdb V7.0 may fail to run on Oracle Rdb V7.1.
This problem is caused by the incorrect handling of an optional routine parameter added in Rdb V7.1.

The following example shows the output from a failed application using SQL_SIGNAL. This application was
compiled under Rdb Release 7.0.6.5 and then run on Rdb V7.1.

$ run test
SQLCODE FOR ATTACH IS: 0
SQLCODE FOR set trn : 0
before open : sqlcode : 0
after open : sqlcode : 0
before fetch
after fetch : sqlcode : −304

Oracle® Rdb for OpenVMS

4.2.39 SET LINE LENGTH Changed Upper Limit 95

%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual
address=0000000000158011, PC=000000000035F3E4, PS=0000001B
%TRACE−E−TRACEBACK, symbolic stack dump follows
 image module routine line rel PC abs PC

 TEST SQL$GETERR SQL$SIGNAL_STOP 6610 00000000000011B8 00000000000445E8
 TEST SQL$GETERR SQL$SIGNAL 6299 00000000000003EC 000000000004381C
 TEST TEST main 1091 00000000000001EC 00000000000301EC
 TEST TEST __main 0 0000000000000064 0000000000030064
 0 FFFFFFFF802613F4 FFFFFFFF802613F4

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The optional parameter is now correctly
handled so that applications compiled and linked under previous versions can be run on V7.1 with requiring a
recompile.

Oracle® Rdb for OpenVMS

4.2.39 SET LINE LENGTH Changed Upper Limit 96

4.3 RDO and RDML Errors Fixed

4.3.1 RDO SHOW FIELD Would Bugcheck on SQL Created
Definition

Bug 1910400

In prior versions of RDO, the SHOW FIELD command would bugcheck when character set information was
detected in a DEFAULT clause, for example:

RDO> data file db$:scratch
RDO> show field for t1
 Fields for relation T1
 C1 signed longword scale 0
 C2 text size is 1
%RDO−F−BUGCHK, there has been a fatal error; please contact your Oracle support
representative; no dump was produced

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The RDO SHOW commands now support, to
a limited degree, the character set information stored by SQL. Oracle Corporation recommends that you use
the SQL interactive utility for displaying metadata created by SQL.

4.3.2 RDML/PASCAL Shareable Link/DEBUG SHRSYMFND Error

When using RDML PASCAL to create shareable images, it is possible to have a SHRSYMFND error
returned if /DEBUG is specified. If a PASCAL program is compiled /DEBUG, all references, whether used or
not are included in the object file. There are two symbols in RDMLVPAS.PAS, RDB$MSG_VECTOR and
RDB$LU_TRHANDLE, which are for backward compatibility. These two symbols are being included in the
object file when /DEBUG is specified and the linker resolves them from RDML_PSECTS in
RDMLRTL71.OLB. As these are symbols, the SHRSYMFND error is returned.

After discussions with HP and further investigation, it was found that there is a new compiler qualifier,
/DEBUG=(NO)SYMBOLS. This qualifier stops unreferenced symbols from being passed to the linker. This
new qualifier is in Version 5.8−88 and above of the PASCAL compiler. In other compilers such as
FORTRAN, this qualifier has NOSYMBOL as the default whereas PASCAL uses SYMBOL as the default.

The following example shows the error.

rdml/pascal/noinit/out=tstpas.pas tstpas.rpa
pascal /list/debug/noop /align=vax tstpas.pas
link/debug/exe=tstpas.exe /map/full/cross tstpas.obj, tstpas.opt/opt
%LINK−E−SHRSYMFND, shareable image psect RDB$MESSAGE_VECTOR was pointed to by a
 symbol definition
%LINK−E−NOIMGFIL, image file not created
%LINK−E−SHRSYMFND, shareable image psect RDB$TRANSACTION_HANDLE was pointed to
 by a symbol definition

There are two workarounds for this problem. The first is to comment out the definitions for
RDB$MSG_VECTOR and RDB$LU_TRHANDLE in RDMLVPAS.PAS if they are not used in your code.
The second workaround is to specify /DEBUG=NOSYMBOL when doing the compile, as shown below.

4.3 RDO and RDML Errors Fixed 97

rdml/pascal/noinit/out=tstpas.pas tstpas.rpa
pascal /list/debug=NOSYMBOL/noop /align=vax tstpas.pas

Oracle® Rdb for OpenVMS

4.3 RDO and RDML Errors Fixed 98

4.4 Oracle RMU Errors Fixed

4.4.1 RMU/CONVERT Writes Incorrect Metadata

OVERVIEW

In Oracle Rdb Release 7.1.0 and Release 7.1.0.1, it is possible that the RMU Convert operation can cause
problems in six of the RDB$ tables. The same problems can occur when a database is implicitly converted by
the RMU Restore operation. Most user applications will not be affected; however, problems can arise when
you try to perform the following operations:

EXPORT−IMPORT•
RMU/EXTRACT•
SHOW SEQUENCE•
COMMENT ON CONSTRAINT•
User queries to any of the six tables•
Applications if database was created with database−wide collating sequence•

In almost every situation, it will be obvious that the metadata is incorrect. Reading the data typically will
show dates that are many centuries in the future or in the past, user names containing unprintable characters,
missing characters, or other kinds of obviously incorrect data. For most users, this will probably be only a
cosmetic problem. For any application that reads Oracle Rdb system tables and uses the data, the impact could
be more severe. The most severe impact would probably be that under certain rare conditions, IMPORT
would fail because EXPORT did not read the correct metadata. Unfortunately, in this case EXPORT will
appear to be successful, while IMPORT will subsequently fail.

All known RMU Convert problems have been corrected in Oracle Rdb Release 7.1.0.2.

SOLUTION

For databases converted with prior releases (7.1.0 or 7.1.0.1), Oracle Corporation is providing a tool,
FIXUP_CONVERT, that corrects the problems introduced by the RMU Convert command. Oracle
recommends that you use FIXUP_CONVERT for every database that has been converted using Release 7.1.0
or Release 7.1.0.1. You can run this tool under any Oracle Rdb V7.1 release.

FIXUP_CONVERT is included in Release 7.1.0.4 and later versions. Oracle Rdb V7.1 will install the latest
version of the tool in the SQL$SAMPLE directory.

To run FIXUP_CONVERT, you must have the OpenVMS privileges SECURITY and SYSPRV or
FIXUP_CONVERT.EXE must be installed with those privileges.

Use the following command to repair a database:

$ FIXUP_CONVERT = "SQLSAMPLE:FIXUP_CONVERT"
$ FIXUP_CONVERT database_root

The repair tool detects and corrects all the corruption described above and generates a report detailing the
number of rows updated by this tool.

4.4 Oracle RMU Errors Fixed 99

The use of this tool on a database that has correct metadata or on a database of a different version is harmless.
On databases where no errors exist, no updates are applied.

The FIXUP_CONVERT tool updates no more then ten rows per transaction; therefore the use of this tool has
minimal impact on other database users accessing the database while the tool is used.

If the FIXUP_CONVERT operation is terminated before all updates have been applied, it can simply be run
again. FIXUP_CONVERT only updates metadata that has not been updated before. New rows added to the
system tables since the database was converted are not affected.

PROBLEM AND SOLUTION DETAILS

In Oracle Rdb Release 7.1.0 and Release 7.1.0.1, the RMU Convert operation causes the problems described
in detail in the following sections. All of the problems are corrected in Release 7.1.0.2. For databases
converted with Release 7.1.0 or Release 7.1.0.1, the problems will remain even after an upgrade to Release
7.1.0.2 or a later version.

Table RDB$MODULES

The RDB$MODULE_CREATOR column in the RDB$MODULES table contains blanks instead of the
original creator of the database.

FIXUP_CONVERT updates this column using the value stored in the RDB$DATABASE_CREATOR field
of the RDB$DATABASE table.

Table RDB$CONSTRAINTS

The content of the RDB$EXTENSION_PARAMETERS*, RDB$SECURITY_CLASS, RDB$CREATED,
RDB$LAST_ALTERED, and RDB$CONSTRAINT_CREATOR columns in the RDB$CONSTRAINTS
table are all four bytes out of alignment and therefore return incorrect data. Undefined results or bugcheck
dumps will result from trying to use the returned data. The null bit for the RDB$DESCRIPTION*,
RDB$EXTENSION_PARAMETERS*, and RDB$SECURITY_CLASS columns is cleared even though no
data is stored in any of these columns. Reading the RDB$DESCRIPTION* or
RDB$EXTENSION_PARAMETERS* column will return 0:0:0 instead of NULL. Reading the
RDB$SECURITY_CLASS column will result in an undefined string possibly containing non−printable
characters.

FIXUP_CONVERT replaces the rows that contain the columns that are out of alignment, setting unused
columns to NULL. RDB$CREATED is set to the value stored in the RDB$DATABASE_CREATED field of
the RDB$DATABASE table. RDB$LAST_ALTERED is set to the current date and time.
RDB$CONSTRAINT_CREATOR is set to the value stored in the RDB$DATABASE_CREATOR field of
the RDB$DATABASE table.

Table RDB$RELATION_FIELDS

The RDB$FIELD_SOURCE column in the RDB$RELATION_FIELDS table for the row where
RDB$RELATION_NAME = 'RDB$WORKLOAD' and RDB$FIELD_NAME = 'RDB$NULL_FACTOR'
erroneously contains the undefined domain 'RDB$PROBABILITY'. The value should be
'RDB$SCALED_COUNTER'.

FIXUP_CONVERT updates this row to use the correct domain name for this column.

Oracle® Rdb for OpenVMS

4.4 Oracle RMU Errors Fixed 100

Table RDB$PARAMETERS

The RDB$PARAMETER_SOURCE column in the RDB$PARAMETERS table is one byte out of alignment.
The effect of this is that the first character is missing and an extra unprintable byte is added at the end. For
rows where RDB$PARAMETER_SOURCE should be blank, the content is a string with 30 blanks plus one
unprintable character.

FIXUP_CONVERT uses the available characters from the domain name and the data type characteristics to
locate the domain. If more than one domain matches these characteristics, then FIXUP_CONVERT uses the
first one found and reports the ambiguity.

Table RDB$FIELDS and RDB$FIELD_VERSIONS

The RDB$COMPUTED_BLR* value created for the RDB$SEQUENCES table column
RDB$NEXT_SEQUENCE_VALUE is incorrect. This causes the SHOW SEQUENCE, RMU Extract, and
EXPORT operations to use the wrong next value for the sequence. This column is not used at runtime by the
Oracle Rdb SEQUENCE feature.

FIXUP_CONVERT replaces this value and the matching value in RDB$FIELD_VERSIONS with a corrected
computed expression.

Databases Created with a Database−Wide Collating Sequence

The RMU Convert operation can cause a problem if the database was created with a database−wide collating
sequence. For some rows in the database, the wrong value is inserted in the RDBVMS$COLLATION_NAME
column in the RDB$FIELD_VERSIONS table. This means that most SQL statements, including any SELECT
statement, executed on converted databases will end with the following error message:

 %RDB−F−CONVERT_ERROR, invalid or unsupported data conversion

−RDMS−F−UNLIKECOLL,fields of unlike collating sequence may not be compared

This error will happen when you use the RMU Convert command in Oracle Rdb Release 7.1.0 and Release
7.1.0.1. You will not see SQL errors for databases created with a database−wide collating sequence that have
been converted using the RMU Convert command in Oracle Rdb Release 7.1.0.2. However, there will be a
few incorrect rows in the RDB$FIELD_VERSIONS table for this version as well.

FIXUP_CONVERT repairs this error. Oracle recommends that for databases created with a database−wide
collating sequence, FIXUP_CONVERT should be run if the database was converted using Oracle Rdb
Release 7.1.0.2 or earlier. If you do not know if a database was created with a database−wide collating
sequence or if you do not know the version of Oracle Rdb that was used to convert the database, you can still
run FIXUP_CONVERT since it will only update
RDB$FIELD_VERSIONS.RDBVMS$COLLATION_NAME where it is needed.

Note

* Datatype is LIST OF BYTE VARYING (also known as segmented string). SELECT
displays just the dbkey of the data.

Oracle® Rdb for OpenVMS

4.4 Oracle RMU Errors Fixed 101

4.4.2 RMU/BACKUP to Tape Can Hang on a Quit Response to a
Prompt

Bug 2303545

On an RMU/BACKUP to tape, when the user specified the "QUIT" response to a prompt indicating that the
backup should terminate and not complete because the wrong tape was mounted or for some other reason, the
backup threads could hang while RMU/BACKUP was terminating. This was actually part of a larger problem
which caused backup thread hangs when a fatal error was signaled. The QUIT prompt signals a fatal error,
"%RMU−F−ABORT, operator requested abort on fatal error" to terminate the backup.

The following example shows that RMU/BACKUP to tape could hang when a QUIT response was given to
an RMU prompt to a user terminal or the operator console indicating that the backup operation should
terminate and not continue.

$ rmu/backup/log/online/label=test1/norewind/density=1 mf_personnel −
 tape_device:mf_personnel

%RMU−E−FATALERR, fatal error on tape_device:[000000]MF_PERSONNEL.RBF;
−SYSTEM−F−VOLINV, volume is not software enabled

%RMU−I−SPECIFYC, specify option (QUIT or CONTINUE)

RMU> QUIT

%RMU−F−ABORT, operator requested abort on fatal error

CHSR36::_TNA71: 14:41:03 RMU71 CPU=00:30:39.69 PF=46866 IO=604302 MEM=876

CHSR36::_TNA71: 14:41:05 RMU71 CPU=00:30:39.70 PF=46866 IO=604303 MEM=876

CHSR36::_TNA71: 14:44:40 RMU71 CPU=00:30:39.70 PF=46866 IO=604304 MEM=876

The only workaround for this problem is to correct the cause of the RMU prompt so the prompt will not be
output.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.3 RMU/BACKUP to Tape Can Hang When Terminating on
Fatal Errors

Bug 2303952

On an RMU/BACKUP to tape, when a fatal error was signaled, a hang could occur. The hang occurred when
RMU/BACKUP was attempting to terminate because of the fatal error. This problem was due to a problem
handling fatal errors.

The following example shows that RMU/BACKUP to tape could hang when it was attempting to terminate
due to a fatal error.

$ rmu/backup/log/checksum/label=back01/norewind mf_personnel −

Oracle® Rdb for OpenVMS

4.4.2 RMU/BACKUP to Tape Can Hang on a Quit Response to a Prompt 102

 tape_device:personnel.rbf

%RMU−I−BCKTXT_02, Full backup of storage area (RESUMES)

DEVICE:[DIRECTORY]RESUMES.RDA;1

%RMU−F−CANTREADDBS, error reading pages 2:15−15
−RMU−F−CHECKSUM, checksum error − computed F79F2744, page contained F7A72744

The only workaround for this problem is to correct the cause of the fatal error.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.4 Unexpected COSI−F−TRU Error From RMU/EXTRACT

Bug 2349013

In prior releases, RMU Extract could fail with a COSI−F−TRU error while processing complex view
definitions.

$ RMU/EXTRACT/ITEM=VIEW/OUTPUT=VIEWS.SQL TESTDB
%COSI−F−TRU, truncation
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−F−FTL_RMU, Fatal error for RMU operation at 29−APR−2002 12:44:10.71

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.5 RMU/LOAD Returned Error When Interchange File
Contained No Rows

Bug 2427564

In Rdb Release 7.1.0.2, the RMU Load process would exit with an error if it processed an interchange file (the
internally formatted unload file) containing no rows. This error was trapped by DCL command procedures
which were not expecting an error for an otherwise legal load operation.

The following example shows the problem:

$ RMU/LOAD SQL$DATABASE NO_DATA DATA_FILE.UNL
%RMU−F−FILACCERR, error reading disk file USER2:[WORK]DATA_FILE.UNL;1
−RMS−E−EOF, end of file detected
%RMU−I−DATRECSTO, 0 data records stored.
%RMU−F−FTL_LOAD, Fatal error for LOAD operation at 12−JUL−2002 12:03:45.20

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The RMU Load process now succeeds even if
the unload file contains zero rows.

4.4.6 RMU/RECOVER Exit Status Does Not Indicate That a
Recovery Failed

Bug 2311588

Oracle® Rdb for OpenVMS

4.4.4 Unexpected COSI−F−TRU Error From RMU/EXTRACT 103

Even though a database recovery failed with fatal errors, the RMU exit status indicated that the recovery was
successful.

$ RMU/RECOVER/LOG ATEST_AIJ1
%RMU−I−LOGRECDB, recovering database file DEVICE:[DIRECTORY]DB_ROOT.RDB
%RMU−I−LOGOPNAIJ, opened journal file DEVICE:[DIRECTORY]ATEST_AIJ1.AIJ;1 at
 12−JUL−2002 16:43:09.61
%RMU−F−TADMISMATCH, journal is for database version 12−JUL−2002 16:42:33.47,
not 12−JUL−2002 16:43:90.61
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−W−NOTRANAPP, no transactions in this journal were applied
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
 needed will be 0
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled
$
$ SHOW SYMBOL $STATUS
 $STATUS == "%X10000001"
$
$ SHOW SYMBOL $SEVERITY
 $SEVERITY == "1"

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

The RMU Recover procedure now exits with the most recent Most Severe status that occurs during the
database recovery operation.

$ RMU/RECOVER/LOG ATEST_AIJ1
%RMU−I−LOGRECDB, recovering database file DEVICE:[DIRECTORY]EDB_ROOT.RDB
%RMU−I−LOGOPNAIJ, opened journal file DEVICE:[DIRECTORY]ATEST_AIJ1.AIJ;1 at
 12−JUL−2002 16:35:38.56
%RMU−F−TADMISMATCH, journal is for database version 12−JUL−2002 16:34:30.40,
 not 12−JUL−2002 16:35:10.72
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 12−JUL−2002 16:35:38.66
$
$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8A8FC"
$
$ SHOW SYMBOL $SEVERITY
 $SEVERITY == "4"

4.4.7 New Multithreaded Backup to Disk, Size Algorithm

Bug 2251068

In the new 7.1 feature, Multithreaded Backup to Disk, it was possible to have a very skewed distribution of
files among the nominated threads. The original algorithm to assign areas to the threads used the byte count of
the area and then accumulated that for each thread. When there are large page sizes and large areas, overflow
was occurring in the thread accumulation field. Since the algorithm assigned areas to the thread with the
lowest total, more areas were assigned to the thread.

The algorithm has been changed to use the VMS block count. This will prevent the overflow condition and
generate a much more even distribution between the threads. Please note that the final size of the backup file
is determined by the amount of data in the area thus the final file sizes among the threads may still seem
skewed.

Oracle® Rdb for OpenVMS

4.4.7 New Multithreaded Backup to Disk, Size Algorithm 104

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.8 Bugcheck at AIJUTL$FORMAT_ARBS When Performing
RMU/BACKUP/AFTER

Bug 2448323

RMU/BACKUP/AFTER may bugcheck with exceptions similar to the ones below if another process attempts
to drop a storage area while the backup is active.

***** Exception at 00FC45E4 : AIJ$JOURNAL + 000002B4
%SYSTEM−F−ROPRAND, reserved operand fault at PC=0000000000FC45E4, PS=00000009

***** Exception at 00462D24 : AIJ$SUBMIT + 0000023C
%SYSTEM−F−ROPRAND, reserved operand fault at PC=0000000000462D24, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.9 Thread Assignment and Storage Area Statistics Messages
Were Not Being Displayed With RMU/BACKUP/LOG

Bug 2217160

RMU Engineering changed the 7.1 code to lessen the amount of log information that was being put out by
RMU Backup or RMU Restore processes if the Log qualifier was specified. However, you could get the log
information if certain RMU debug logicals were turned on. The changes caused ABS (Archive Backup
System) Rdb backups to fail. A few other users also wished to be able to get the log information using the Log
qualifier again, perhaps with some way to choose a level of logging for the customer's need.

As a solution, the keywords Brief (default) and Full were added for the Log qualifier on the RMU Backup and
RMU Restore commands to decide the level of logging. If you specify /Log=Full, RMU now logs thread
assignment and backed up or restored storage area statistics messages.

The changes are available in Oracle Rdb Release 7.1.0.4.

Example 1: Following is an example for default BRIEF backup log .

$ RMU/BACKUP/LOG/LABEL=TEST00 MF_PERSONNEL 111MUA30:PERS71.RBF
%RMU−I−BCKTXT_00, Backed up root file DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 1−AUG−2002 14:44:59.67
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1 at 1−AUG−2002 14:44:59.68
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]JOBS.RDA;1 at 1−AUG−2002 14:44:59.69
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMP_INFO.RDA;1 at 1−AUG−2002 14:44:59.70
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMPIDS_OVER.RDA;1 at 1−AUG−2002 14:44:59.71
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]JOBS.RDA;1 at 1−AUG−2002 14:45:00.24
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMPIDS_MID.RDA;1 at 1−AUG−2002 14:45:00.29

Oracle® Rdb for OpenVMS

4.4.8 Bugcheck at AIJUTL$FORMAT_ARBS When Performing RMU/BACKUP/AFTER 105

%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]EMP_INFO.RDA;1 at 1−AUG−200214:45:00.29
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMPIDS_LOW.RDA;1 at 1−AUG−2002 14:45:00.30
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]EMPIDS_OVER.RDA;1 at 1−AUG−2002 14:45:00.41
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]DEPARTMENTS.RDA;1 at 1−AUG−2002 14:45:00.43
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1 at 1−AUG−2002 14:45:00.44
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]MF_PERS_SEGSTR.RDA;1 at 1−AUG−2002 14:45:00.46
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]DEPARTMENTS.RDA;1 at 1−AUG−2002 14:45:00.83
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]EMPIDS_MID.RDA;1 at 1−AUG−2002 14:45:00.88
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]EMPIDS_LOW.RDA;1 at 1−AUG−2002 14:45:00.88
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]MF_PERS_SEGSTR.RDA;1 at 1−AUG−2002 14:45:00.97
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 1−AUG−2002 14:45:01.17
%RMU−I−COMPLETED, BACKUP operation completed at 1−AUG−2002 14:45:04.05
$

Example 2: Following is an example for FULL backup log.

$ RMU/BACKUP/LOG=FULL/LABEL=TEST00 MF_PERSONNEL 111MUA30:PERS71.RBF
%RMU−I−BCKTXT_01, Thread 1 uses devices 111MUA30:
%RMU−I−BCKTXT_08, Thread 1 was assigned file
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file DISK:[DIRECTORY]JOBS.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file DISK:[DIRECTORY]EMP_INFO.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file DISK:[DIRECTORY]EMPIDS_OVER.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file DISK:[DIRECTORY]EMPIDS_MID.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file DISK:[DIRECTORY]EMPIDS_LOW.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file DISK:[DIRECTORY]DEPARTMENTS.RDA;1
%RMU−I−BCKTXT_08, Thread 1 was assigned file
DISK:[DIRECTORY]MF_PERS_SEGSTR.RDA;1
%RMU−I−BCKTXT_00, Backed up root file DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 1−AUG−2002 14:52:32.19
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1 at 1−AUG−2002 14:52:32.19
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]JOBS.RDA;1 at 1−AUG−2002 14:52:32.20
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMP_INFO.RDA;1 at 1−AUG−2002 14:52:32.21
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMPIDS_OVER.RDA;1 at 1−AUG−2002 14:52:32.21
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]JOBS.RDA;1 at 1−AUG−2002 14:52:32.87
BACKUP summary statistics for storage area (JOBS) DISK:[DIRECTORY]JOBS.RDA;1
 ignored 2 space management pages
 backed up 0 inventory pages
 backed up 0 logical area bitmap pages
 backup data compression ratio: 0.11
%RMU−I−BCKTXT_07, backed up 402 data pages
%RMU−I−BCKTXT_02, Starting full backup of storage area

Oracle® Rdb for OpenVMS

4.4.8 Bugcheck at AIJUTL$FORMAT_ARBS When Performing RMU/BACKUP/AFTER 106

DISK:[DIRECTORY]EMPIDS_MID.RDA;1 at 1−AUG−2002 14:52:32.90
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]EMP_INFO.RDA;1 at 1−AUG−2002 14:52:33.10
BACKUP summary statistics for storage area (EMP_INFO)
DISK:[DIRECTORY]EMP_INFO.RDA;1
 ignored 2 space management pages
 backed up 0 inventory pages
 backed up 0 logical area bitmap pages
 backup data compression ratio: 0.11
%RMU−I−BCKTXT_07, backed up 402 data pages
%RMU−I−BCKTXT_02, Starting full backup of storage area
DISK:[DIRECTORY]EMPIDS_LOW.RDA;1 at 1−AUG−200214:52:33.11
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]SALARY_HISTORY.RDA;1 at 1−AUG−2002 14:52:33.24
......
......
......
......
%RMU−I−BCKTXT_12, Completed full backup of storage area
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 1−AUG−2002 14:52:34.04
BACKUP summary statistics for storage area (RDB$SYSTEM)
DISK:[DIRECTORY]MF_PERS_DEFAULT.RDA;1
 ignored 1 space management page
 backed up 9 inventory pages
 backed up 189 logical area bitmap pages
 backup data compression ratio: 0.50
%RMU−I−BCKTXT_07, backed up 843 data pages
%RMU−I−COMPLETED, BACKUP operation completed at 1−AUG−2002 14:52:35.90
$

4.4.10 Cannot Resolve 2PC Transaction After RMU/RECOVER

Bug 2489320

If an RMU/RECOVER command was issued without the /RESOLVE qualifier, and at the end of the recover
operation a prepared transaction was not resolved, subsequent attempts to resolve the transaction would be
ignored. The only way the transaction could be committed was to restore the database again and use the
RMU/RECOVER/RESOLVE command.

In the following example, note that TSN 0:143 is prepared but not committed when the recover operation is
finished. While it is correct for the transaction to be rolled back at the end of the recover operation, the
database should not be considered to be recovered past the unresolved transaction. That is, subsequent recover
attempts should begin recovery at TSN 0:143. In this example, the database is treated as if TSN 0:143 has
been completely processed, which is not correct.

$ RMU/RECOVER /TRACE/LOG/ROOT=TEST$DB:TESTDB.RDB TEST1_BACKUP.AIJ
%RMU−I−LOGRECDB, recovering database file DEV:[DIR.DB]TESTDB.RDB;1
%RMU−I−LOGOPNAIJ, opened journal file DEV:[DIR]TEST1_BACKUP.AIJ;1 at
2−AUG−2002 09:54:34.88
%RMU−I−LOGRECSTAT, transaction with TSN 0:130 prepare record
%RMU−I−LOGRECSTAT, transaction with TSN 0:131 prepare record
%RMU−I−LOGRECSTAT, transaction with TSN 0:131 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:130 committed
 ...
%RMU−I−LOGRECSTAT, transaction with TSN 0:143 prepare record
%RMU−I−LOGRECSTAT, transaction with TSN 0:142 prepare record

Oracle® Rdb for OpenVMS

4.4.10 Cannot Resolve 2PC Transaction After RMU/RECOVER 107

%RMU−I−LOGRECSTAT, transaction with TSN 0:142 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:145 committed
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed
%RMU−I−LOGRECOVR, 14 transactions committed
%RMU−I−LOGRECOVR, 0 transactions rolled back
%RMU−I−LOGRECOVR, 0 transactions ignored
%RMU−I−AIJACTIVE, 1 active transaction not yet committed or aborted
%RMU−I−LOGRECSTAT, transaction with TSN 0:143 is active
%RMU−I−AIJPREPARE, 1 of the active transactions prepared but not yet committed
or aborted
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 1
%RMU−F−PARTDTXNERR, error when trying to participate in a distributed
transaction
%SYSTEM−F−UNREACHABLE, remote node is not currently reachable
 TSN=0:143

30504C41504A6A8111D63C3DC61C9775 TID: 'u..Æ=<Ö..jNODE01'
30504C41504A46A011D21BF333677D1D TM LOG_ID: '.}g3ó.Ò..FNODE01'
00000000000000000000000120200640 RM LOG_ID: '@. '
00202020202032305F524553550200DD RM_NAME: '..USER_02 .'
00000000000100010000003D10A80000 RM_NAME: '...=...........'
 30504C41504A NODE NAME: 'NODE01'
 30504C41504A PARENT NODE NAME: 'NODE01'

%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−I−LOGSUMMARY, total 14 transactions committed
%RMU−I−LOGSUMMARY, total 1 transaction rolled back
%RMU−I−LOGSUMMARY, total 0 transactions ignored
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 0
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled
$
$ RMU/RECOVER /RESOLVE/STATE=COMMIT −
 /TRACE/LOG/ROOT=TEST$DB:TESTDB.RDB TEST1_BACKUP.AIJ
%RMU−I−LOGRECDB, recovering database file DEV:[DIR.DB]TESTDB.RDB;1
%RMU−I−LOGOPNAIJ, opened journal file DEV:[DIR]TEST1_BACKUP.AIJ;1 at
2−AUG−2002 09:54:38.47
%RMU−I−LOGRECSTAT, transaction with TSN 0:131 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:130 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:132 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:133 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:134 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:135 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:136 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:137 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:138 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:139 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:140 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:141 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:142 ignored
%RMU−I−LOGRECSTAT, transaction with TSN 0:145 ignored
%RMU−I−RESTART, restarted recovery after ignoring 14 committed transactions
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed
%RMU−I−LOGRECOVR, 0 transactions committed
%RMU−I−LOGRECOVR, 0 transactions rolled back
%RMU−I−LOGRECOVR, 14 transactions ignored
%RMU−I−AIJACTIVE, 1 active transaction not yet committed or aborted
%RMU−I−LOGRECSTAT, transaction with TSN 0:143 is active
%RMU−I−AIJSUCCES, database recovery completed successfully

Oracle® Rdb for OpenVMS

4.4.10 Cannot Resolve 2PC Transaction After RMU/RECOVER 108

%RMU−I−AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 1
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−I−LOGSUMMARY, total 0 transactions committed
%RMU−I−LOGSUMMARY, total 1 transaction rolled back
%RMU−I−LOGSUMMARY, total 14 transactions ignored
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 0
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled

This problem has been corrected in Oracle Rdb Release 7.1.0.4. If there are unresolved two−phase commit
transactions when a database recovery is finished, then the database will be considered to be recovered only to
the point of the oldest unresolved transaction. Subsequent recovery attempts will resume with that transaction.

4.4.11 RMU/RESTORE /CDD Failed to Integrate Root File into
CDD

Bug 2374513

During an RMU Restore process, if the CDD qualifier was specified or allowed as the default, the integration
of the database information failed with the error:

%RMU−F−INTEGDBDIF, Database filespec must equate to filespec "X" recorded in
CDD

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.12 RMU/BACKUP Verifies Area File Belongs to Root

Bug 2414364

When RMU/BACKUP backed up a database, there was no check to see if the area files belonged to the
specified root file. If a second database, using the same area file names as the first was stored in the same
directory as the first, RMU/BACKUP would not detect any errors and would back up the wrong files.

Now when a backup is done, a check is done to see if the time of creation of an area file agrees with the root
file. If it doesn't, then an error is generated and the backup aborts. It is recommended that an
RMU/VERIFY/ROOT be done to determine the extent of the problem. If a backup is still desired, then the
/EXCLUDE qualifier can be used with the BACKUP command to ignore these areas.

The following example shows the results of backing up database X which contains area a1 and a2 from
another database. Area a3 is correct.

−−−
Backup x.rdb ...
−−−
$ RMU/BACKUP/LOG X.RDB X.RBF

%RMU−F−INVDBSFIL, inconsistent storage area file A1.RDA;1
%RMU−F−FTL_BCK, Fatal error for BACKUP operation
−−−
Verify the root file
−−−

Oracle® Rdb for OpenVMS

4.4.11 RMU/RESTORE /CDD Failed to Integrate Root File into CDD 109

$ RMU/VERIFY/ROOT X.RDB

%RMU−W−BADDBPRO, A1.RDA;1 file does not belong to database X.RDB;1
 found references to database Y.RDB;1
%RMU−W−BADDBPRO, A2.RDA;1 file does not belong to database X.RDB;1
 found references to database Y.RDB;1
%RMU−W−BADDBPRO, A1.SNP;1 file does not belong to database X.RDB;1
 found references to database Y.RDB;1
%RMU−W−BADDBPRO, A2.SNP;1 file does not belong to database X.RDB;1
 found references to database Y.RDB;1
%RMU−W−ROOERRORS, 4 errors encountered in root verification

−−−
Example excluding storage area a1 and a2 x.rdb ...
−−−
$ RMU/BACKUP/EXCLUDE=(A1,A2)/LOG X.RDB X.RBF

%RMU−I−WAITOFF, Waiting for offline access to X.RDB;1
%RMU−I−NOTALLARE, Not all areas will be included in this backup file
%RMU−W−NOCOMBAC, No full and complete backup was ever performed
%RMU−W−AIJNOTENA, After−image journaling is not enabled
%RMU−I−BCKTXT_00, Backed up root file X.RDB;1
%RMU−I−BCKTXT_02, Starting full backup of storage area A3.RDA;1
%RMU−I−BCKTXT_02, Starting full backup of storage area X.RDA;1
%RMU−I−BCKTXT_12, Completed full backup of storage area A3.RDA;1
%RMU−I−BCKTXT_12, Completed full backup of storage area X.RDA;1
%RMU−I−COMPLETED, BACKUP operation completed

The only way to detect this condition is to do an RMU/VERIFY/ROOT prior to doing the backup.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.13 RMU Extract Not Processing DEFAULT Correctly

Bug 2519260

In previous versions of Rdb 7.1, the RMU Extract command would incorrectly format the DEFAULT clause
in a CREATE TABLE if the clause contained a subselect.

The following example shows the incorrect output. The FROM clause has been omitted from the subselect.

create table T_1 (
 A_1
 INTEGER,
 A_2
 INTEGER
 default (select max(T_1.A_1)),
 ...);

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.4.13 RMU Extract Not Processing DEFAULT Correctly 110

4.4.14 Unexpected BLRINV Error When Using RMU/EXTRACT

Bugs 2523357 and 2479665

In prior versions of Oracle Rdb, the RMU Extract command could fail with a BLRINV error as shown in the
following example:

$ RMU/EXTRACT/OUTPUT TESTDB
%RMU−F−BLRINV, internal error − BLR string 0 for TABLENAME.COLUMNNAME
is invalid
−COSI−E−BAD_CODE, corruption in the query string
%RMU−F−FTL_RMU, Fatal error for RMU operation at 20−AUG−2002 16:21:18.75

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.15 RMU/BACKUP/AFTER/NOQUIET Could Bugcheck

The RMU BACKUP/AFTER/NOQUIET command may sometimes fail with the following bugcheck:

***** Exception at 0053289C : KODBND$BUILD_AWL + 0000006C
%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual address=00000000000

This problem was introduced in Oracle Rdb Release 7.1.0.2. To avoid the problem, omit the Noquiet qualifier
from the Backup command.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.16 RMU/RECOVER/AREA Increments the Active AIJ
Sequence Number

Bug 1778243

If you do not specify a list of area names when you run an RMU RECOVER/AREA command, a new version
of the current active AIJ file is created. This new version of the AIJ has the next recovery sequence number. If
a subsequent recovery is applied, an error is generated indicating that the original recovery sequence number
cannot be found, and the recovery aborts.

If a list of storage areas to be recovered is supplied, this behavior does not occur and no new version of the
journal is created. A restriction was placed in Release 7.0.6.2 which required the user to provide area names to
recover.

This restriction has now been lifted. If you run an RMU RECOVER/AREA command without specifying a
list of area names, an automatic recover is performed.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.17 RMU/LOAD/FIELDS With Empty Options File

If an RMU/LOAD/FIELDS="@options_file" is issued and the options file mentioned is empty, RMU/LOAD
loads all fields. This is effective beginning with Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.4.14 Unexpected BLRINV Error When Using RMU/EXTRACT 111

Prior to this change, the following error would result from such an operation: "%RMU−F−FLDMUSMAT,
Specified fields must match in number and datatype with the unloaded data".

4.4.18 BTRLEACAR Warning Raised by RMU/VERIFY/INDEX

Bug 2556212

A problem in how the index node leaf cardinality for sorted ranked indexes were updated after a deletion of an
index leaf node caused incorrect leaf cardinalities to be stored in the ranked index nodes.

Subsequent verification of the index using RMU/VERIFY/INDEX would raise a BTRLEACAR warning
similar to the following:

%RMU−W−BTRLEACAR, Inconsistent leaf cardinality (C2) of 3 specified
 for entry 2 at dbkey 47:563:0 using precision of 33.
 Dbkey 47:12505:1 at level 2 specified a cardinality of 1
%RMU−I−BTRROODBK, root dbkey of B−tree is 47:563:0

Although the leaf cardinalities may not be consistent in the index nodes, the data integrity of the actual entries
is not compromised by this problem. The only consequence of this problem is the raising of the
RMU/VERIFY warning as shown above.

Previous release notes stated that the BTRLEACAR warning would no longer be seen if the cardinality
difference was small. This is no longer true. The warning will still be raised even with small cardinality
differences. Rebuilding the indexes will update the cardinalities correctly preventing the BTRLEACAR
warning.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Note

It is highly recommended that all sorted ranked indexes be rebuilt after installing Oracle
Rdb Release 7.1.0.4.

4.4.19 RMU UNLOAD Incorrectly Using DBKEY SCOPE IS
ATTACH

Bug 2623790

In prior releases of Oracle Rdb V7.1, it was possible that RMU UNLOAD would default to DBKEY SCOPE
IS ATTACH. This problem has been corrected in Oracle Rdb Release 7.1.0.4.

This problem occurs when applications attach to the Rdb database without a database parameter block (DPB).
This can be determined by defining RDMS$SET_FLAGS "DATABASE" prior to running the application or
RMU command.

A typical attach to the database will display lines describing the explicitly set "Database Parameter Buffer"
including the DBKEY SCOPE.

Oracle® Rdb for OpenVMS

4.4.18 BTRLEACAR Warning Raised by RMU/VERIFY/INDEX 112

$ SQL$
SQL> attach 'filename SCRATCH';
 ATTACH #1, Database DISK3:[DATABASES.V71]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=78)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK1:[DIR]SQL$71.EXE;1"
003F (00063) RDB$K_FACILITY_ALL
0040 (00064) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0044 (00068) RDB$K_FACILITY_ALL
0045 (00069) RDB$K_DPB2_REQUEST_SCOPE (Attach)
0049 (00073) RDB$K_FACILITY_RDB_VMS
004A (00074) RDB$K_DPB2_CDD_MAINTAINED (No)
 RDMS$BIND_WORK_FILE = "DISK2:[TEST]RDMSTTBL$KMCMLSDFBXK.TMP;" (Visible = 0)

In the case of RMU UNLOAD, this buffer is absent and defaults should be used. Unfortunately, the DBKEY
SCOPE is undefined and is being incorrectly set to DBKEY SCOPE IS ATTACH.

$ RMU /UNLOAD SCRATCH
 ATTACH #1, Database DISK3:[DATABASES.V71]SCRATCH.RDB;1
 RDMS$BIND_WORK_FILE = "DISK2:[TEST]RDMSTTBL$KMY10MNHBXK.TMP;" (Visible = 0)

It is possible that other applications or 4GL tools suffer from this problem also. It can be confirmed using
RDMS$SET_FLAGS as shown here, or using the RMU/SHOW STATISTICS command to see if any process
is waiting for the lock "waiting for database key scope" in the Active User Stall Messages screen.

4.4.20 RMU Extract of Trigger Fails With BLRINV Error

Bugs 2523357 and 2479665

In some cases, RMU Extract would fail when extracting complex objects such as triggers, as shown in the
following example:

$ RMU/EXTRACT/ITEM=TRIGGER/OUTPUT=TTT.TTT TEST_DATABASE
%RMU−F−BLRINV, internal error − BLR string 77 for . is invalid
−RDMS−E−BAD_CODE, corruption in the query string
%RMU−F−FTL_RMU, Fatal error for RMU operation at 24−JUL−2002 07:49:01.25

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.4.21 RMU Extract Could Generate a Bugcheck When
Extracting Views

Bug 2640049

In previous versions of Oracle Rdb, it was possible that an RMU Extract command could generate a bugcheck
or an incorrect view definition. This problem was caused by interference between the extract of one view and
another where state flags were not correctly reset. It requires a specified combination of features in the views
to cause this error.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.4.20 RMU Extract of Trigger Fails With BLRINV Error 113

4.4.22 RMU BACKUP/AFTER_JOURNAL Creates Empty Files

Bug 2152894

A failed RMU BACKUP/AFTER_JOURNAL command could create empty (zero length) files which could
cause the LogMiner process to fail.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The backup files are now created only when
Oracle Rdb has something to write to them.

Oracle® Rdb for OpenVMS

4.4.22 RMU BACKUP/AFTER_JOURNAL Creates Empty Files 114

4.5 LogMiner Errors Fixed

4.5.1 RMU/UNLOAD AFTER_JOURNAL AIJ Backup and Restart
Information

Previously, the next backup file after a quiet−point AIJ backup had to be the first one supplied to the
LogMiner process. However, when restart information is present, an internal quiet−point can be implied if the
first AIJ backup specified is prior to the backup sequence number indicated in the restart information. When
restart information is supplied, the actual check for the quiet point backup can be waived.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.5.2 Log Qualifier Default for RMU /SET LOGMINER

Previously, the default setting for the Log qualifier for the RMU Set Logminer command was incorrect. The
Log qualifier defaulted to display log messages. The log message default state should be the current setting of
the DCL verify switch.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.5.3 RMU/UNLOAD AFTER_JOURNAL Exception in
AIJEXT$FINISH

As the result of an exception, it was possible for the RMU UNLOAD AFTER_JOURNAL command to loop
while writing bugcheck dump files. Typically, the dump files would all have an exception in the
AIJEXT$FINISH routine.

This problem has been corrected in Oracle Rdb Release 7.1.0.4. The AIJEXT$FINISH routine now checks to
make sure that certain data structures are initialized before using them.

4.5 LogMiner Errors Fixed 115

4.6 Row Cache Errors Fixed

4.6.1 Shared Memory Improvements for Galaxy Environments

Several improvements and corrections have been made for shared memory options for the Oracle Rdb Row
Cache feature when used in an OpenVMS Galaxy environment. The following list outlines these changes.

Previously, the SHARED MEMORY IS SYSTEM attribute was incorrectly ignored for row caches in
an OpenVMS Galaxy environment when a database had Galaxy support enabled.

•

Previously, it was possible to either crash the system or be unable to map to very large caches in an
OpenVMS Galaxy environment when a database had Galaxy support enabled. Some internal
conversions from 32−bit values to 64−bit values were incorrectly either extending or truncating the
sign during arithmetic operations.

•

These problems have been corrected in Oracle Rdb Release 7.1.0.4.

4.6.2 Record Cache VM Problem

Bug 2526642

Some programs which used record cache and frequently disconnected from the database and then reattached
would exhaust VM resources and then terminate with an ILLPAGCNT error. The termination may or may not
include a bugcheck dump.

The only known workarounds are:

Give the program a larger pagefile quota.•
Manually or automatically terminate and restart the program periodically before it can abort.•
Redesign the program to less frequently disconnect and reattach.•

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.6.3 Row Cache Performance Improvement When ROW
REPLACEMENT IS DISABLED

For row caches set to disallow row replacement, Oracle Rdb now allows multiple processes to scan internal
row cache hash chains simultaneously. Previously, the internal cache hash chains were searched by only a
single process at a time due to an exclusive access latch.

This change can improve cache search performance for heavily utilized caches.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.6.4 Log Qualifier Default for RMU /SET ROW_CACHE

Previously, the default setting for the Log qualifier for the RMU Set Row_Cache command was incorrect. The
Log qualifier defaulted to display log messages. The log message default state should be the current setting of

4.6 Row Cache Errors Fixed 116

the DCL verify switch.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.6 Row Cache Errors Fixed 117

4.7 RMU Show Statistics Errors Fixed

4.7.1 Config Menu of Transaction Analysis Screen in RMU
SHOW STATISTICS Modified to Display Transaction Summary

Bug 1982071

The Config menu of the "Transaction Analysis" screen in RMU SHOW STATISTICS has been modified. An
option has been added which would enable/disable display of transaction summary (Number and average
duration of different types of transactions) along with other details.

Following is a sample screen with Transaction summary turned on.

Node: MALIBU (1/1/16) Oracle Rdb X7.1−00 Perf. Monitor 14−MAR−2002 15:53:53.27
Rate: 3.00 Seconds Transaction Analysis Elapsed: 00:01:13.13
Page: 1 of 1 PRAS_USER:[PRAS.RMU]MF_PERSONNEL.RDB;1 Mode: Online
−−−

95th %ile transaction duration: 12.0 seconds
2 transactions at an average duration of 5.9 seconds
95th %ile read/write transaction duration: 12.0 seconds
1 read/write transactions at an average duration of 11.9 seconds
1 read−only transactions at an average duration of 0.0 seconds

−−−
Config Exit Help Menu Set_rate Write !

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.7.2 RMU Show Statistics Does Not Update Counters With
/Time=−n

Bug 2383970

RMU SHOW STATISTICS does not update the counters when a negative time interval is specified.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.7.3 Commit Queue Algorithms are no Longer Used

The commit queue algorithms are no longer used by the RMU Show Statistics command. Commit Que Min,
Commit Que Max, and Commit Que Cur statistics are no longer displayed on the Hot Standby Dashboard
screen.

The Commit Queue Chart screen will no longer be available with the RMU Show Statistics command.

4.7 RMU Show Statistics Errors Fixed 118

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.7.4 RMU Show Statistics/Cluster Not Generating OPCOM
Messages Consistently

Bug 2364586

When an Alarm=n qualifier is used with the RMU SHOW STATISTICS command along with the
Cluster_Nodes and Notify=OPCOM qualifiers, the intent is to have the RMU SHOW STATISTICS command
generate an OPCOM message and deliver it to the OPCOM class associated with the Notify qualifier. This
message alerts the operator to the fact that a process has stalled for more than n seconds, where n is the value
assigned to the Alarm qualifier. The process that has stalled may be on any node that is included in the node
name list assigned to the Cluster qualifier.

This process did not occur when the RMU SHOW STATISTICS command was run in batch mode.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.7.5 Stall Message Descriptions Inconsistent

Bug 2430792

Stall message descriptions generated by the RMU SHOW STATISTICS/STALL_LOG command can
sometimes be inconsistent. The following is an excerpt from a stall log file which demonstrates the
inconsistency.

 Oracle Rdb V7.0−64 Performance Monitor Stall Log
 Database 1DKB201:[BLITTIN.RDB706]MF_PERSONNEL.RDB;1
 Stall Log created 24−JUN−2002 13:56:31.79
13:56:41.60 2080C446:12 13:56:40.05 waiting for record 68:2:1 (PR)
 State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 68:2:1"
 Blocker: 2080C446 BLITTIN 58004E29 EX Grant
 Blocker: 2080C446 BLITTIN 31002CDC PR Wait

Though the second entry shows that the lock request is on the Wait queue, the process state is listed as
Blocker. This should have been Waiting.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

4.7.6 Ability to Invoke a Procedure From RMU/SHOW
STATISTICS When a Stall Exceeds ALARM Seconds

Bug 1965033

At present, the user can only get OPCOM notifications from RMU/SHOW STATISTICS when a process
stalls for more than the "ALARM" seconds. Oracle Rdb Release 7.1.0.4 will provide the ability to invoke a
procedure from RMU/SHOW STATISTICS when this happens.

The user can specify the procedure to invoke by defining a DCL symbol that invokes the procedure just like
one would do to invoke a procedure for a user defined event, and assign it to the option in the options file

Oracle® Rdb for OpenVMS

4.7.4 RMU Show Statistics/Cluster Not Generating OPCOM Messages Consistently 119

called "STALL_INVOKE". This is a new option that has been added to support this feature.

Like the invoke with user defined events, the following parameters give more information about the stall.

P1 gives you the name of the database.
P2 gives you the time and date of the invocation.
P3 gives you the process identification of the stalled process.
P4 gives you the stream identification.
P5 gives you the value of ALARM seconds.

This change has been included in Oracle Rdb Release 7.1.0.4.

4.7.7 RMU SHOW STATISTICS Device Information Screen
Enhanced

The RMU SHOW STATISTICS Device Information screen has been enhanced to display information about
devices that hold AIJ files. Previously, information for devices holding just the storage areas, the root file, and
snapshot files was displayed on this screen.

This problem has been corrected in Oracle Rdb Release 7.1.0.4.

Oracle® Rdb for OpenVMS

4.7.7 RMU SHOW STATISTICS Device Information Screen Enhanced 120

4.8 Hot Standby Errors Fixed

4.8.1 LRS Bugchecks at KUTREC$DO_C_AIJBUF + 00001128

Bug 2516677

It was possible for the Hot Standby Log Recover Server to fail with bugchecks similar to the following:

***** Exception at 001E50C8 : KUTREC$DO_C_AIJBUF + 00001128
%COSI−F−BUGCHECK, internal consistency failure

Or,

***** Exception at 001EDFB0 : KUTREC$AIJBL_PEEK + 000000D0
%SYSTEM−F−ACCVIO, access violation

The problem would only occur when the following were true:

Large transactions were being applied by the LRS. The transaction would need to consume more than
508 blocks of after−image journal (AIJ) space.

•

The LRS would have to be able to process more than 127 blocks of AIJ entries in less time than it
takes to complete a read I/O from a temporary file.

•

This problem would be most likely to occur when a transaction had very large records to update or if the
LogMiner feature was enabled and many deletes were done by a transaction.

After restarting Hot Standby, the same transaction would typically be applied by the LRS without error.

This problem only exists in Oracle Rdb Release 7.1.0.2 and 7.1.0.3. This problem has been corrected in
Oracle Rdb Release 7.1.0.4.

4.8 Hot Standby Errors Fixed 121

Chapter 5
Software Errors Fixed in Oracle Rdb Release 7.1.0.3
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.0.3.

Chapter 5 Software Errors Fixed in Oracle Rdb Release 7.1.0.3 122

5.1 Software Errors Fixed That Apply to All Interfaces

5.1.1 Query With Same Column in Two Clauses Returns Wrong
Results

Bug 2285818

The following query with the same column in two clauses should return 1 row:

set flags 'strategy,detail';

SELECT T2.vert, T3.flag, T5.data
 FROM T1, T2, T3, T4, T5
 WHERE T1.plan_id = T2.plan_id
 AND T1.cust_id = T4.cust_id
 AND T3.prod_id = T4.prod_id
 AND T5.prod_id = T4.prod_id
 AND T3.prod_id = T5.prod_id
 AND T1.code = ' '
 AND ((T4.prio = 3 AND T3.flag = '10') <== "T3.flag = '10'" is
 OR (T4.prio = 3 AND T3.flag = '12')
 OR (T4.prio = 3 AND T3.flag = '13'))
 AND ((T3.flag = '10' AND T5.data = '73') <== reused here again
 OR T5.data <> '73') ;
Tables:
 0 = T1
 1 = T2
 2 = T3
 3 = T4
 4 = T5
Cross block of 5 entries
 Cross block entry 1
 Conjunct: 0.CODE = ' '
 Get Retrieval sequentially of relation 0:T1
 Cross block entry 2
 Get Retrieval by index of relation 1:T2
 Index name I_T2_01 [1:1] Direct lookup
 Keys: 0.PLAN_ID = 1.PLAN_ID
 Cross block entry 3
 Conjunct: 3.PRIO = 3
 Get Retrieval by index of relation 3:T4
 Index name I_T4_01 [1:1] Direct lookup
 Keys: 0.CUST_ID = 3.CUST_ID
 Cross block entry 4
 Conjunct: (2.FLAG = '10') OR (2.FLAG = '12') OR
 (2.FLAG = '13')
 Get Retrieval by index of relation 2:T3
 Index name I_T3_01 [1:1] Direct lookup
 Keys: 2.PROD_ID = 3.PROD_ID
 Cross block entry 5
 Conjunct: (2.PROD_ID = 4.PROD_ID) AND
 ((4.DATA = '73') OR (4.DATA <> '73')) <== missing "FLAG = '10'"
 Get Retrieval by index of relation 4:T5
 Index name I_T5_01 [1:1] Direct lookup
 Keys: 4.PROD_ID = 3.PROD_ID
 T2.VERT T3.FLAG T5.DATA

5.1 Software Errors Fixed That Apply to All Interfaces 123

 LV_508 13 73 <== WRONG
 LH_610 12 75 <== CORRECT
2 rows selected

One of the equality predicates in the OR clauses referencing table T3 is referenced again in another clause, as
seen below.

 AND ((T4.prio = 3 AND T3.flag = '10') <== "T3.flag = '10'" is
 OR (T4.prio = 3 AND T3.flag = '12')
 OR (T4.prio = 3 AND T3.flag = '13'))
 AND ((T3.flag = '10' AND T5.data = '73') <== reused here again
 OR T5.data <> '73') ;

However, in the detailed strategy display, the predicate is missing under the cross block entry 5, as seen
below.

 Cross block entry 5
 Conjunct: (2.PROD_ID = 4.PROD_ID) AND
 ((4.DATA = '73') OR (4.DATA <> '73')) <== missing "FLAG = '10'"
 Get Retrieval by index of relation 4:T5
 Index name I_T5_01 [1:1] Direct lookup
 Keys: 4.PROD_ID = 3.PROD_ID

The key parts of this query which contributed to the situation leading to the error are these:

The main query joins 5 tables (T1, T2, T3, T4, T5) using cross strategy with 5 cross block entries.
Tables T3, T4 and T5 are joined by PROD_ID column key, table T4 is joined with T1 by CUST_ID,
and T1 is joined with T2 by PLAN_ID.

1.

Table T1 rows are filtered by an equality predicate. If this is removed, the strategy changes in the
order of the cross blocks and the query works.

2.

One of the filter predicates contains OR expressions which reference one column of table T4
(T4.PRIO) and one column of table T3 (T3.FLAG).

3.

Another filter predicate contains an OR expression which references the same column of table T3
from the previous filter predicate (e.g. T3.FLAG = '10'). This is the main reason why the query returns
wrong results.

4.

As a workaround, the query works if the second predicate "T3.FLAG = '10'" is replaced by a LIKE operator,
for example "T3.FLAG like '10'".

set flags 'strategy,detail';

SELECT T2.vert, T3.flag, T5.data
 FROM T1, T2, T3, T4, T5
 WHERE T1.plan_id = T2.plan_id
 AND T1.cust_id = T4.cust_id
 AND T3.prod_id = T4.prod_id
 AND T5.prod_id = T4.prod_id
 AND T3.prod_id = T5.prod_id
 AND T1.code = ' '
 AND ((T4.prio = 3 AND T3.flag = '10') <== "T3.flag = '10'" is
 OR (T4.prio = 3 AND T3.flag = '12')
 OR (T4.prio = 3 AND T3.flag = '13'))
 AND ((T3.flag LIKE '10' AND T5.data = '73') <== replaced by LIKE
 OR T5.data <> '73') ;

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

Oracle® Rdb for OpenVMS

5.1 Software Errors Fixed That Apply to All Interfaces 124

5.1.2 GROUP BY Query Followed by CASE With EXISTS Clause
Returns Wrong Results

Bug 2198990

The following GROUP BY query followed by CASE with EXISTS clause should return 3 rows but returns
only 2 rows.

set flags 'strategy,detail';

select count(*), RD.York_Loss_Code,
 CASE WHEN EXISTS (Select * from Loss_Gruppe where
 Loss_Code = RD.York_Loss_Code
)
 THEN 'P'
 ELSE 'F' END
 from redraw RD
group by RD.York_Loss_Code,
 CASE WHEN EXISTS (Select * from Loss_Gruppe where
 Loss_Code = RD.York_Loss_Code
)
 THEN 'P'
 ELSE 'F' END
optimize using test_outline
;
~S: Outline "TEST_OUTLINE" used
Aggregate Sort
Match
 Outer loop
 Sort Get Retrieval sequentially of relation REDRAW
 Inner loop
 Aggregate Sort Get
 Retrieval sequentially of relation LOSS_GRUPPE
 YORK_LOSS_CODE
 1 1 P
 1 2 P
2 rows selected

The tables contain the following rows:

sel york_loss_code from redraw;
 YORK_LOSS_CODE
 1
 10
 2
3 rows selected

sel loss_code from loss_gruppe;
 LOSS_CODE
 1
 2
2 rows selected

This feature was not included in the very first release of Oracle Rdb7 and this is the first time the customer
has used a GROUP BY clause followed by a CASE with EXISTS clause.

Oracle® Rdb for OpenVMS

5.1.2 GROUP BY Query Followed by CASE With EXISTS Clause Returns Wrong Results 125

The key parts of this query which contributed to the situation leading to the error are these:

The main select query is a count aggregate with GROUP BY clause.1.
One of columns in the GROUP BY clause contains a CASE expression with an EXISTS clause on a
subquery.

2.

As a workaround, the query works if the query outline TEST_OUTLINE is changed to use cross strategy, as
seen below.

create outline TEST_OUTLINE
id '1B91E858006B77EC167036406D2D04AB'
mode 0
as (
 query (
 subquery (
 subquery (
 REDRAW 0 access path sequential
 join by cross to
! join by match to
 subquery (
 LOSS_GRUPPE 1 access path sequential
)
)
)
)
)
compliance optional ;

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.1.3 ORDER BY Query on a BIGINT or INT Column Returns
Wrong Order

Bug 2261391

The following ORDER BY query on a BIGINT column returns values in the wrong order.

create data file foo;
create tab t1 (a smallint,b date vms,c bigint);
insert into t1 value (1, '16−APR−2002 14:13:41.33', −8214388935822950413);
insert into t1 value (1, '16−APR−2002 18:54:02.53', 3170710922826741446);
create index i1 on t1 (a,b,c);

select * from t1 order by c;
 A B C
 1 16−APR−2002 18:54:02.53 3170710922826741446
 1 16−APR−2002 14:13:41.33 −8214388935822950413
2 rows selected

A similar error might occur on INT columns and that problem has also been corrected.

As a workaround, disable the QSORT feature by defining the logical RDMS$BIND_MAX_QSORT_COUNT
to zero.

$DEFINE RDMS$BIND_MAX_QSORT_COUNT 0

Oracle® Rdb for OpenVMS

5.1.3 ORDER BY Query on a BIGINT or INT Column Returns Wrong Order 126

SQL$
SQL>attach 'f foo';
SQL>sel * from t1 order by c;
 A B C
 1 16−APR−2002 14:13:41.33 −8214388935822950413
 1 16−APR−2002 18:54:02.53 3170710922826741446
2 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.1.4 OR Clause With Constant Predicate Returns Wrong
Results

Bug 2405927

The following query with an OR predicate containing a constant predicate should return a non−zero count.

set flags 'strategy,detail';

SELECT COUNT(T2.NR_ITEM)
 FROM T1, T2
 WHERE T2.CD_VENDOR = T1.CD_VENDOR
 AND T2.NR_PROD = T1.NR_PROD
 AND T2.IN_CANCEL = 'N'
 AND T1.IN_PRIO = 'S'
 AND (T1.CD_VENDOR = '187102' OR '187102' = '')
 AND (T1.SHIP_DT BETWEEN '1−may−2002 00:00:00'
 AND '6−may−2002 00:00:00') ;
Tables:
 0 = T1
 1 = T2
Aggregate: 0:COUNT (1.NR_ITEM)
 Bool: NOT MISSING (1.NR_ITEM)
Cross block of 2 entries
 Cross block entry 1
 Conjunct: 0.IN_PRIO = 'S'
 Conjunct: (0.CD_VENDOR = '187102') OR ('187102' = '')
 Conjunct: 0.SHIP_DT >= '1−MAY−2002'
 Conjunct: 0.SHIP_DT <= '6−MAY−2002'
 Index only retrieval of relation 0:T1
 Index name T1.NR_DOC_SRT [0:0]
 Cross block entry 2
 Leaf#01 BgrOnly 1:T2 Card=4386
 Bool: (1.CD_VENDOR = 0.CD_VENDOR) AND (1.NR_PROD = 0.NR_PROD) AND
 (1.IN_CANCEL = 'N')
 AND ('187102' = '') ! Note: <= missing left side of OR
 BgrNdx1 T2.CD_VENDOR_HSH [2:2] Fan=1
 Keys: (1.CD_VENDOR = 0.CD_VENDOR) AND (1.NR_PROD = 0.NR_PROD)
 BgrNdx2 T2.DT_T1.SRT [2:2] Fan=13
 Keys: (1.CD_VENDOR = 0.CD_VENDOR) AND (1.NR_PROD = 0.NR_PROD)
 Bool: 1.IN_CANCEL = 'N'
 0
1 row selected

Notice that one of the descendants of the OR predicate is missing in the detail dump of the dynamic leaf
strategy.

Oracle® Rdb for OpenVMS

5.1.4 OR Clause With Constant Predicate Returns Wrong Results 127

This is a regression caused by the fix made for Bug 2285818 where a query with shared OR predicate returns
wrong results.

As a workaround, the query works if the dynamic strategy is disabled by setting the SQL flag
'MAX_STABILITY' or defining the logical RDMS$MAX_STABILITY as Y.

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.1.5 SELECT COUNT(*) Might Bugcheck Under Certain Dialects
of SQL

Bug 2415860

When the dialect was set to SQL92, SQL99 or ORACLE LEVEL1, it was possible for SELECT COUNT(*)
to bugcheck when the optimizer used a SORTED RANKED index.

The following example shows the problem.

SQL> SET DIALECT 'ORACLE LEVEL1';
SQL> select count(*) from fea_person;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file SYSMAN:[MANAGER]RDSBUGCHK.DMP;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file SYSMAN:[MANAGER]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000010, PC=0000000000363F1C, PS=0000001B

The dump file shows this exception:

***** Exception at 00F2FF08 : RDMS$$GEN_SORT_KEY_ASNS + 000015F8
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000010, PC=0000000000F2FF08, PS=0000000B

A workaround for the problem is to disable the count scan optimization used for SORTED RANKED indices:

SQL> SET FLAGS 'NOCOUNT_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.1.6 Getting Null Values Instead of Actual Values

Bug 2245379

When columns of a table have been added or dropped several times it is possible, in some rare conditions, to
get null values instead of actual ones for a column when doing a sequential scan of the table.

The following example shows the different results depending on the strategy.

SQL> select f1,f2 from t where f1 > 0 and f1 < 3;
Index only retrieval of relation T
 Index name I_T [1:1]
 F1 F2
 1 1
 2 1

Oracle® Rdb for OpenVMS

5.1.5 SELECT COUNT(*) Might Bugcheck Under Certain Dialects of SQL 128

SQL> select f1,f2,f3 from t where f1 > 0 and f1 < 3;
Conjunct Get Retrieval sequentially of relation T
 F1 F2 F3
 1 NULL 1
 2 NULL 1

As a workaround for the problem, add a new column to the table showing the problem.

SQL> Alter table t add column xx integer;
SQL> commit;

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.1.7 Another OR With Two Constant Predicates Returns Wrong
Results

Bugs 2451862, 2405927, 2285818

The following query with OR predicate containing constant predicates should find some rows.

set flags 'strategy,detail';

SELECT T2_ANO, T2_ORGAO
 FROM T1, T2 WHERE
 T2_ORGAO = T1_ORGAO AND
 T2_ANO = T1_ANO AND
 ((T1_DATA = '187310105' AND T1_ANO = '02') OR
 ('187310105' = ' ' AND '02' = ' ')) AND
 (T2_STATUS = 'PE');
Tables:
 0 = T1
 1 = T2
Cross block of 2 entries
 Cross block entry 1
 Leaf#01 FFirst 0:T1 Card=1
 Bool: ((0.T1_DATA = '187310105') AND (0.T1_ANO = '02')) OR
 (('187310105' = ' ') AND ('02' = ' '))
 BgrNdx1 NECE_SG_SETOR_IN_SRT [0:0] Fan=18
 Cross block entry 2
 Leaf#02 FFirst 1:T2 Card=2
 Bool: (1.T2_ORGAO = 0.T1_ORGAO) AND
 (1.T2_ANO = 0.T1_ANO) AND
 ('187310105' = ' ') AND ('02' = ' ') <== WRONG
 AND ((1.T2_STATUS = 'PE') OR (1.T2_STATUS <> 'EN'))
 BgrNdx1 T2_SRT [2:2] Fan=11
 Keys: (1.T2_ORGAO = 0.T1_ORGAO) AND (1.T2_ANO =
 0.T1_ANO)
0 rows selected

The query works if one of the constant equality predicates is removed, as in the following example.

SELECT T2_ANO, T2_ORGAO
 FROM T1, T2 WHERE
 T2_ORGAO = T1_ORGAO AND
 T2_ANO = T1_ANO AND

Oracle® Rdb for OpenVMS

5.1.7 Another OR With Two Constant Predicates Returns Wrong Results 129

 ((T1_DATA = '187310105' AND T1_ANO = '02') OR
! ('187310105' = ' ' AND '02' = ' ')) AND
 ('187310105' = ' ')) AND
 (T2_STATUS = 'PE');
Tables:
 0 = T1
 1 = T2
Cross block of 2 entries
 Cross block entry 1
 Leaf#01 FFirst 0:T1 Card=1
 Bool: ((0.T1_DATA = '187310105') AND (0.T1_ANO = '02')) OR
 ('187310105' = ' ')
 BgrNdx1 NECE_SG_SETOR_IN_SRT [0:0] Fan=18
 Cross block entry 2
 Leaf#02 FFirst 1:T2 Card=2
 Bool: (1.T2_ORGAO = 0.T1_ORGAO) AND (1.T2_ANO =
 0.T1_ANO) AND (1.T2_STATUS = 'PE')
 BgrNdx1 T2_SRT [2:2] Fan=11
 Keys: (1.T2_ORGAO = 0.T1_ORGAO) AND (1.T2_ANO =
 0.T1_ANO)
 T2_ANO T2_ORGAO
 02 187
1 row selected

A second update kit to Oracle Rdb 7.0.6.3 included Bug 2405927 where the constant predicate in an OR tree
is pulled out of the OR predicate and re−generated in other leg. However, this fix did not cover the current
query where there are more than one simple constant predicates in the OR clause, as below.

 ('187310105' = ' ' AND '02' = ' ')) AND

As a workaround, the query works if the dynamic strategy is disabled by setting the SQL flag
'MAX_STABILITY' or defining the logical RDMS$MAX_STABILITY to Y.

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.1.8 Another Query With Same Column in Two Clauses Returns
Wrong Results

Bugs 2453935, 2285818

The following query with the same column in two clauses should return 1 row.

set flags 'strategy,detail';

SELECT S.PROD_ID,
 S.CONTRACT_ID,
 S.LONG_QTY,
 S.SHORT_QTY
 FROM SALE S,
 PRODUCT P
 WHERE
 (S.LONG_QTY > 0 OR S.SHORT_QTY > 0) AND
 (S.PROD_ID = P.PROD_ID AND
 (S.SHORT_QTY > 0 OR P.PROD_CODE = 'FUT')) ;
Tables:
 0 = SALE

Oracle® Rdb for OpenVMS

5.1.8 Another Query With Same Column in Two Clauses Returns Wrong Results 130

 1 = PRODUCT
Cross block of 2 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 1:PRODUCT
 Cross block entry 2
 Conjunct: ((0.LONG_QTY > 0) OR (0.SHORT_QTY > 0)) AND ((
 0.SHORT_QTY > 0) OR (1.PROD_CODE = 'FUT'))
 Get Retrieval by index of relation 0:SALE
 Index name SALE_NDX [1:1]
 Keys: 0.PROD_ID = 1.PROD_ID
 S.PROD_ID S.CONTRACT_ID S.LONG_QTY S.SHORT_QTY
 15 14200 0 0
 15 14207 16 0
2 rows selected

This is similar to the query reported in Bug 2285818, where one of the equality predicates in the OR clauses
referencing table SALE is referenced again in another clause, as in the following example.

 (S.LONG_QTY > 0 OR S.SHORT_QTY > 0) AND <== "S.SHORT_QTY > 0" is
 (S.PROD_ID = P.PROD_ID AND
 (S.SHORT_QTY > 0 OR P.PROD_CODE = 'FUT')) <== reused here again

As a workaround, the query works if the shared predicate is placed at the first position within the OR clause,
as in the following example.

 (S.SHORT_QTY > 0 OR S.LONG_QTY > 0) AND <== "S.SHORT_QTY > 0" is 1st
 (S.PROD_ID = P.PROD_ID AND
 (S.SHORT_QTY > 0 OR P.PROD_CODE = 'FUT')) <== and reused here again

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

Oracle® Rdb for OpenVMS

5.1.8 Another Query With Same Column in Two Clauses Returns Wrong Results 131

5.2 SQL Errors Fixed

5.2.1 Unexpected TRANSACTION Debug Output for Compound
Statements

In Oracle Rdb Release 7.1.0.2, the output from the TRANSACTION debug flag is always displayed for SET
TRANSACTION, START TRANSACTION and LOCK TABLE statements within a compound (BEGIN
END) statement. This will occur whenever the compound statement is compiled by the Rdb Server.

This problem can interfere with application execution and, for servers such as SQL*Net for Rdb, can fill
output log files.

The following example shows that the TRANSACTION dump is output for LOCK TABLE even though the
TRANSACTION flag is not enabled.

SQL> begin
cont> lock table employees for shared read mode;
cont> end;
~T Compile transaction (2) on db: 1
~T Transaction Parameter Block: (len=14)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WAIT
0002 (00002) TPB$K_LOCK_READ (reserving) "EMPLOYEES" TPB$K_SHARED
SQL> show flags

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:
 PREFIX,WARN_DDL,MAX_RECURSION(100)
SQL>

In some environments, it may be possible to define RDMS$DEBUG_FLAGS_OUTPUT to the NL: device to
discard this output.

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.2 SQL Errors Fixed 132

5.3 Oracle RMU Errors Fixed

5.3.1 RMU /CONVERT From V7.1 to V7.1 Did Not Preserve Client
Sequences

Bug 2417207

In Oracle Rdb 7.1, a conversion of a database from V7.1 to V7.1 did not preserve any client sequences
defined in the database root file. This caused bugcheck dumps for SQL queries involving client sequences
since the system table RDB$SEQUENCES referenced client sequences that were no longer in the database
root file. Note that this problem only happened for database conversions where the database to be converted
was already at the current V7.1 version and client sequences had been defined prior to the conversion.

The following example shows the problem where the convert from V7.1 to V7.1 with client sequences defined
completed but then caused bugchecks for SQL queries involving client sequences.

$sql
SQL> attach 'filename DEVICE:[DIRECTORY]TESTDB.RDB';
SQL> create sequence EMPID start with 123;
SQL> commit;
SQL> exit
$ rmu/convert DEVICE:[DIRECTORY]TESTDB.RDB;
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.1−03
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−W−NOCVTCOM, Database DEVICE:[DIRECTORY]TESTDB.RDB;1
is already at the current structure level.
$ sql
attach 'filename DEVICE[DIRECTORY]testdb';
select EMPID.nextval from rdb$database;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIRECTORY]
RDSBUGCHK.DMP;
%COSI−F−BUGCHECK, internal consistency failure

To avoid this problem, do not convert a database from Rdb V7.1 to Rdb V7.1 if client sequences have been
defined for the database prior to the conversion. If this problem happens, do a full restore of the V7.1
database. If no database backup exists, contact Oracle Rdb support.

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

5.3.2 RMU/COPY and RMU/MOVE Did Not Preserve Database
Client Sequences

Bug 2434332

RMU/COPY and RMU/MOVE did not preserve any client sequences defined in the original database root
when creating a new database root. This caused bugchecks if SQL queries involving client sequences were
made to the copied or moved database. If no client sequences were defined for the copied or moved database,
this problem did not happen. This problem has been corrected and any client sequences defined in the original
database root are preserved in the copied or moved database root.

5.3 Oracle RMU Errors Fixed 133

The following example shows the problem when client sequences were defined for a database, the database
root was then moved or copied, and SQL queries which involved client sequences were then made to the
copied or moved database.

$sql
SQL> att 'filename mf_personnel';
SQL>create sequence EMPID start with 123;
SQL> select EMPID.nextval from rdb$database;
 123
1 row selected
SQL> exit
$create/dir [.copy]
ALPHA4>RMU/COPY_DATABASE MF_PERSONNEL /DIRECTORY=DEVICE:[.COPY]
SQL> att 'filename [.copy]mf_personnel';
SQL>select EMPID.nextval from rdb$database;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RDSBUGCHK.DMP;

To avoid this problem, either move or copy the database without any client sequences defined or use
RMU/BACKUP and RMU/RESTORE to move or copy the database.

This problem has been corrected in Oracle Rdb Release 7.1.0.3.

Oracle® Rdb for OpenVMS

5.3 Oracle RMU Errors Fixed 134

Chapter 6
Software Errors Fixed in Oracle Rdb Release 7.1.0.2
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.0.2.

Chapter 6 Software Errors Fixed in Oracle Rdb Release 7.1.0.2 135

6.1 Software Errors Fixed That Apply to All Interfaces

6.1.1 Zero Index Prefix Cardinality After Create Index

Bug 867890

Under certain conditions, index prefix cardinality stored for a newly−created sorted index was incorrect
(zero). This could sometimes occur when a table already had rows stored in it. When the index prefix
cardinalities are not stored (are zero), the query optimizer might choose poor query strategies resulting in slow
response times.

The following is an example illustrating the problem. A table, TT, is created with two data rows. Next, a
unique index, TT_U, is created on that table and the transaction is committed. The ensuing select statement
lists the index segments and the index prefix cardinality stored for each segment. For index TT_U, which has
three segments, there are two index prefixes: (1) the column S by itself, and (2) the column S with the column
E. The example below shows that the index prefix cardinalities were zero both after the index creation was
committed and also after a disconnect from the database had been performed.

SQL> create table tt (s char (4), e char (1), v int);
SQL> insert into tt values ('ABC', 'Z', 10000000);
1 row inserted
SQL> insert into tt values ('ABC', 'Z', 10000001);
1 row inserted
SQL> commit;
SQL>
SQL> create unique index tt_u on tt (s,e,v);
SQL> commit;
SQL>
SQL> select cast(rdb$field_name as char(1)) as col,
cont> cast(rdb$field_position as tinyint) as pos,
cont> cast(rdb$cardinality as tinyint) as pfx_card
cont> from rdb$index_segments where rdb$index_name = 'TT_U';
 COL POS PFX_CARD
 S 1 0
 E 2 0
 V 3 0
3 rows selected
SQL> rollback;
SQL>
SQL> disconnect all;
SQL>
SQL> attach 'filename test.rdb';
SQL>
SQL> select cast(rdb$field_name as char(1)) as col,
cont> cast(rdb$field_position as tinyint) as pos,
cont> cast(rdb$cardinality as tinyint) as pfx_card
cont> from rdb$index_segments where rdb$index_name = 'TT_U';
 COL POS PFX_CARD
 S 1 0
 E 2 0
 V 3 0
3 rows selected
SQL> rollback;

6.1 Software Errors Fixed That Apply to All Interfaces 136

As a workaround, to correct this error following index creation, use the RMU utility to collect optimizer
cardinality statistics for the problem index.

$ RMU /COLLECT OPTIMIZER_STATISTICS /STATISTIC=CARDINALITY TEST.RDB

This problem has been corrected in Oracle Rdb Release 7.1.0.2. Now, index prefix cardinalities will be
recorded for newly−created indexes as soon as the work is committed.

6.1.2 RDB−E−ARITH_EXCEPT Error From the Rdb Optimizer

Bug 1694309

When using workload statistics, it was possible that a query that joined several tables together would produce
a divide by zero error.

The following example shows the result of trying to execute a query that exposed the problem.

%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−SYSTEM−F−HPARITH, high performance arithmetic trap, Imask=00000000,
 Fmask=00000001, summary=04, PC=0000000000FBF748, PS=0000000B
−SYSTEM−F−FLTDIV, arithmetic trap, floating/decimal divide by zero at
 PC=0000000000FBF748, PS=0000000B

As a side effect of this problem, some queries could be inaccurately costed by the optimizer, which could lead
to less than optimal retrieval strategies. The following simple example shows a query where the cardinality
was inaccurately calculated from the workload statistics because of this problem.

SQL> set flags 'estimates'
SQL> select * from t1, t2 where t1.f1=t2.f1;
Solutions tried 6
Solutions blocks created 4
Created solutions pruned 1
Cost of the chosen solution 1.5162601E+01
Cardinality of chosen solution 0.0000000E+00
~O: Workload statistics used
 T1.F1 T2.F1
 1 1
.
.
.
1000 rows selected

Oracle Rdb now correctly interprets NULL factors of 1.0 and 0.0 in workload statistics and therefore correctly
calculates the cardinality of this example to 1000 rows.

The problem can be worked around using any of the following techniques:

Ensuring that workload data does not have a null factor of exactly 0.0 or 1.0.•
Removing workload statistics.•
Ensuring that the table cardinalities are greater than 1 for all tables in the query.•
Use of the OLD_COST_MODEL debug flag.•

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.1.2 RDB−E−ARITH_EXCEPT Error From the Rdb Optimizer 137

6.1.3 Page Locking Problems in Release 7.1.0 and Release
7.1.0.1

Bug 2042873

Oracle Rdb Release 7.1 introduced errors into the buffer page locking mechanisms that could cause excessive
stalls or deadlocks.

The first problem was triggered when the Asynchronous Prefetch (APF) mechanism was used to fetch a buffer
that contained only one page. In that situation, blocking ASTs for the page lock would be ignored. This was
typically seen for buffers containing Space Area Management (SPAM) pages.

Regular user processes rarely read SPAM pages via APF, but the AIJ Log Recovery Server (LRS) will often
use APF to read SPAM pages. Processes attempting to read the standby database while the LRS was in
operation would sometimes see long stalls for SPAM page locks since the LRS was neglecting to process the
blocking AST requests.

When not using Hot Standby, this problem may be avoided by disabling APF. However, it is not possible to
disable APF for the LRS.

The second problem was seen when Global Buffers were enabled. In that situation, if one process read a
buffer via the APF mechanism, and a second process wanted to access pages within the same buffer, the
second process would not use the proper locking protocol to ensure that the first process was properly notified
via the blocking AST mechanisms. This could lead to excessive stalls for page locks and deadlocks on page
locks. This problem was quite noticeable when the LRS process needed to access a page being held by
processes doing online access to the standby database. It was possible for the LRS to encounter so many lock
conflicts that it could not process fast enough and would throttle activity on the master database.

To workaround this problem, global buffers may be disabled. This may, however, induce a substantial
performance degradation in the application.

These problems have been corrected in Oracle Rdb Release 7.1.0.2.

6.1.4 Storage Area Default Size Increase

Bug 2151253

The storage area default size was 400 pages which was too small and always caused the area to be extended at
least once during database creation. This default has been increased to 700 pages which is now just large
enough to not require extending during database creation.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.5 Recovery Process Caused Excessive Snapshot File
Growth

Bug 2033576

Oracle® Rdb for OpenVMS

6.1.3 Page Locking Problems in Release 7.1.0 and Release 7.1.0.1 138

In Oracle Rdb Release 7.1.0.1, it was possible for the Database Recovery process (DBR) to excessively
extend snapshot files, and perhaps fail with a bugcheck dump containing an error similar to the following:

***** Exception at 0017040C : PIO$EXTEND_STAREA + 0000097C
%RDMS−F−FILACCERR, error extending file DEV:[DIR]SNAPSHOT_FILE.SNP;
−SYSTEM−W−DEVICEFULL, device full; allocation failure

This would typically happen after a process had inserted many rows in the database and, before the transaction
was committed, there was a system failure or the database was closed with the
RMU/CLOSE/ABORT=DELPRC command. In that situation, the DBR would needlessly store before image
entries of all of the inserted rows into the snapshot file(s), and it would not attempt to reuse any of the pages
currently in the snapshot file(s).

This problem has been corrected in Oracle Rdb Release 7.1.0.2. After a node failure, the DBR will not attempt
to write snapshot file entries when rolling back inserted rows.

6.1.6 Dynamic Optimization Estimation Incorrect for Ranked
Indices

The dynamic optimization process was incorrectly calculating the cost of scanning indices of type SORTED
RANKED.

In the following example, the table being queried has the numbers one to one thousand in both fields. The
different ranges used should result in a different estimated cost. However in all cases the ESTIM phase
computes the cost of scanning these indices as 680:

SQL> select * from t where f1 between 1 and 2 and f2 between 2 and 1000;
~S#0003
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:34/0\680 2:34/0\680
~E#0003.01(1) BgrNdx1 EofData DBKeys=2 Fetches=2+0 RecsOut=1 #Bufs=1
~E#0003.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+1 RecsOut=1`ABA
~E#0003.01(1) Fin Buf DBKeys=2 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected
SQL> select * from t where f1 between 2 and 1000 and f2 between 1 and 2;
~S#0004
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 1:34/0\680 2:34/0\680
~E#0004.01(1) BgrNdx1 EofData DBKeys=999 Fetches=0+10 RecsOut=1 #Bufs=10
~E#0004.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+11 RecsOut=1`ABA
~E#0004.01(1) Fin Buf DBKeys=999 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected

In the first example (query 3), the index T1 on field F1 is the correct index to use, as the key range is very
small. In the second example (query 4), the index T2 on field F2 is the correct index to use. However, in both
cases the indices are costed the same so no index reordering takes place.

Oracle® Rdb for OpenVMS

6.1.6 Dynamic Optimization Estimation Incorrect for Ranked Indices 139

Even in this small example, significantly more work is being performed in query 4 as can be observed from
the I/O counts.

This problem is corrected in Oracle Rdb Release 7.1.0.2. Rdb now returns a costing from the ESTIM phase
that reflects the different key value ranges for the query. The following example shows the corrected
execution where query 4 reorders the index, resulting in significantly less I/O:

SQL> select * from t where f1 between 1 and 2 and f2 between 2 and 1000;
~S#0003
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:1/1/1 2:35/0\681
~E#0003.01(1) BgrNdx1 EofData DBKeys=2 Fetches=0+0 RecsOut=1 #Bufs=1
~E#0003.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+1 RecsOut=1`ABA
~E#0003.01(1) Fin Buf DBKeys=2 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected
SQL> select * from t where f1 between 2 and 100 and f2 between 1 and 2;
~S#0004
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 2:1/0\1 1:4/0\80
~E#0004.01(1) BgrNdx2 EofData DBKeys=2 Fetches=0+0 RecsOut=1 #Bufs=1
~E#0004.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+0 RecsOut=1`ABA
~E#0004.01(1) Fin Buf DBKeys=2 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected

The only workaround for this problem is to use indices of TYPE IS SORTED rather than of TYPE IS SORTED
RANKED.

6.1.7 Bugchecks Truncating Table in Mixed−Format Area with
Row Caches

Bug 1994856

In some cases, truncating a table where its data or indexes are stored in mixed format areas can result in a
bugcheck. This bugcheck was caused by incorrectly processing "Row Cache Reserved" space on a database
page.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The "Row Cache Reserved" space on the
database page now causes the row in the cache to be correctly fetched and considered for deletion.

6.1.8 Fast Commit Checkpoints Do Not Always Advance

In previous releases of Oracle Rdb, a process' after−image journal checkpoint location would only be
advanced when one of the following events occurred:

A transaction ended (COMMIT/ROLLBACK)•

Oracle® Rdb for OpenVMS

6.1.7 Bugchecks Truncating Table in Mixed−Format Area with Row Caches 140

An RMU/CHECKPOINT command was issued•
A journal switchover occurred (multiple after image journals utilized)•

If a process became idle for an extended period of time, the checkpoint location would not advance and could
become quite old. This could be troublesome if a process failure occurred, since the old checkpoint location
would require the database recovery process (DBR) to process all of the journal contents starting at the point
of the last checkpoint location for the failed process. The DBR journal processing could take a considerable
amount of time and all database processing would be frozen until the DBR completed.

This release introduces changes in the way the fast commit CHECKPOINT INTERVAL IS n SECONDS
option is implemented. In the past, Oracle Rdb would only check to see if the time interval was exceeded at
the end of a transaction. In this release, if the CHECKPOINT INTERVAL IS n SECONDS option has been
specified, Oracle Rdb processes will periodically check to see if the checkpoint may be advanced, even if the
process is in the middle of a transaction. After the specified number of seconds have elapsed, the current
checkpoint location will be evaluated, and if any of the criteria specified for checkpoint advance (journal
growth, transaction count, time) have been exceeded since the last checkpoint then the checkpoint will be
advanced. Note that this means that a checkpoint can occur at any point in time, not just at the end of a
transaction as was typically the case before.

In addition, if the COMMIT TO JOURNAL OPTIMIZATION option is not being used, and no updates have
occurred during the number of seconds specified by the CHECKPOINT TIMED EVERY n SECONDS
clause, then the journal checkpoint location will be cleared for that process. If the process does not have a
current checkpoint and the process later terminates abnormally, that process will not require any after image
journal processing by the DBR process.

The details of the new timer implementation is as follows. When a process first makes an update to the
database, a timer is queued for CHECKPOINT INTERVAL IS n SECONDS in the future. When that timer
expires, Oracle Rdb checks to see if the checkpoint should be advanced and then it queues another timer. The
next time the timer expires, if no additional updates have been made, then the process flushes all modified
database buffers to disk and the checkpoint location is reset. No further timers are queued until the process
makes another update to the database. If updates have been made since that timer was queued then the process
checks to see if the checkpoint should be advanced and then another timer is queued to check again later.

This enhancement also introduces a subtle change in the way that Oracle Rdb displays checkpoint locations.
Previously, when a process had never checkpointed, the output from RMU/DUMP/USERS would display the
following:

Active user with process ID 22005424
 Stream ID is 1
 Monitor ID is 1 (ALPHA4)
 Transaction ID is 10
 No transaction in progress
>> Process has not yet checkpointed
 Last Process quiet−point was AIJ sequence 0

Since a process can now fluctuate between the states of having a checkpoint location or no longer having a
checkpoint location, the output of RMU/DUMP/USERS now displays the following for a user that does not
have a checkpoint location:

Active user with process ID 22005424
 Stream ID is 1
 Monitor ID is 1 (ALPHA4)
 Transaction ID is 10

Oracle® Rdb for OpenVMS

6.1.7 Bugchecks Truncating Table in Mixed−Format Area with Row Caches 141

 No transaction in progress
>> Process has no current checkpoint
 Last Process quiet−point was AIJ sequence 0

In addition, the checkpoint line will only be displayed if the fast commit feature is enabled.

6.1.9 Monitor "Home" Directory

Bug 2205733

By default, the Oracle Rdb monitor (RDMMON) process inherits its default device and directory specification
from the process that executed the RMU /MONITOR START command (typically when executing the
RMONSTART71.COM procedure). This default device and directory specification is, in turn, inherited by the
various server processes (such as DBR, RCS, ALS, and so forth).

It is, however, possible to "SET DEFAULT" to an invalid or non−existant directory. And it is also possible to
delete a directory that might happen to be the default directory for another process. These types of events can
cause database server processes to fail. The Oracle Rdb monitor process does attempt to detect an invalid
directory specification, but it is not able to prevent an existing valid specification from becoming invalid (due,
for example, to deleting the directory).

In order to provide additional control over the device and directory specification used by the monitor and to
make the monitor and database servers more resilient to changes in the system, the monitor process has been
enhanced in regards to its default directory.

The monitor attempts to translate a new logical name "RDM$MON_DIRECTORY". If this logical name
exists and specifies a valid device and directory specification, the monitor process explicitly sets its default to
that device and directory. If this logical name is not defined or does not specify a valid directory, the monitor
attempts to use the default device and directory that it inherited from the process that started the monitor. If
this does not specify a valid directory, the monitor attempts to use the SYS$MANAGER logical name.
Finally, if this does not specify a valid directory, the monitor attempts to use the SYS$SYSTEM logical name.

Once the monitor has determined a valid default directory, it creates a temporary file in that directory. The
monitor process leaves this file open until the monitor process is shut down. This open file prevents the
directory from being deleted. Note, however, that it is still possible to cause database server processes to fail if
you manually rename the directory structure such that the monitor's default device and directory specification
is no longer valid. Oracle recommends that if you must rename any portion of the directory tree that is used as
the monitor process's default directory, that you first shutdown the Oracle Rdb monitor.

6.1.10 Bugcheck When Using Persona With SQL/Services

Bug 2217920

A bugcheck would occur with the exception %RDB−E−AUTH_UNTRUSTED, rdb_register_user must be
called from a trusted user when using the OCI protocol service to access an Oracle Rdb database with
"SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT ENABLED)" and service owner account
having only NETMBX and TMPMBX privileges.

A workaround is to give the service owner SYSPRV privilege.

Oracle® Rdb for OpenVMS

6.1.9 Monitor "Home" Directory 142

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.11 Query With Join Predicates on Leading Segments and
Equality Filters Returns Wrong Results

Bug 2204152

The following query with join predicates on leading segments and equality filters should find 2 rows instead
of 0 rows:

set flags 'strategy,detail';
SELECT T2.PRICE_AMT FROM T1, T2
 WHERE
 T2.CMP_NO = 1 AND
 T2.PROD_NO = 161255 AND
 T2.DIV_NO = 1 AND
 T2.CUST_NO = 10674 AND

 T1.CMP_NO = T2.CMP_NO AND
 T1.PROD_NO = T2.PROD_NO AND
 T1.DIV_NO = T2.DIV_NO AND
 T1.CUST_NO = T2.CUST_NO AND
 T1.QUOTE = 0
 ;
Tables:
 0 = T1
 1 = T2
Cross block of 2 entries
 Cross block entry 1
 Conjunct: 0.QUOTE = 0
 Conjunct: 0.DIV_NO = 1
 Conjunct: 0.CMP_NO = 1
 Index only retrieval of relation 0:T1
 Index name T1_NDX [4:4]
 Keys: (0.DIV_NO = 1) AND (0.PROD_NO = 161255) AND
 (0.CUST_NO = 10674) AND
 (0.CMP_NO = 1.CMP_NO) <== Note 1: incorrect conjunct
 Cross block entry 2
 Leaf#01 FFirst 1:T2 Card=7843
 Bool: (1.CMP_NO = 1) AND (1.PROD_NO = 161255) AND (1.DIV_NO =
 1) AND (1.CUST_NO = 10674) AND (0.CMP_NO = 1.CMP_NO)
 AND (0.PROD_NO = 1.PROD_NO) AND (0.DIV_NO =
 1.DIV_NO) AND (0.CUST_NO = 1.CUST_NO)
 BgrNdx1 T2_NDX [2:2] Fan=13
 Keys: (0.CUST_NO = 1.CUST_NO) AND (0.PROD_NO = 1.PROD_NO)
 Bool: (1.CMP_NO = 1) AND (1.PROD_NO = 161255) AND (1.DIV_NO
 = 1) AND (1.CUST_NO = 10674)
0 rows selected

Note 1: 1.CMP_NO references table T2 in the cross block entry 1
 where context 1 is not available yet.

Indexes on table T1:
T1_NDX with column CUST_NO
 and column PROD_NO
 and column DIV_NO
 and column CMP_NO
 and column QUOTE

Oracle® Rdb for OpenVMS

6.1.11 Query With Join Predicates on Leading Segments and Equality Filters Returns Wrong Results143

Indexes on table T2:
T2_NDX with column CUST_NO
 and column PROD_NO
 and column START_DATE
 and column DIV_NO
 and column CMP_NO

The key parts of this query which contributed to the situation leading to the error are these:

The query joins two tables, T1 and T2, using all leading segments except the last one in T1_NDX
index, e.g. T1.CMP_NO, T1.PROD_NO, T1.DIV_NO, T1.CUST_NO.

1.

The last segment, T1.QUOTE of T1_NDX, is also used in the equality filter.2.
There is also an equality filter for each segment of T2_NDX used as a join predicate, e.g.
T2.CMP_NO, T2.PROD_NO, T2.DIV_NO, T2.CUST_NO.

3.

As a workaround, the query works if the SQL flag TRANSITIVITY is turned off.

set flags 'notransitivity, max_stability';

Tables:
 0 = T1
 1 = T2
Cross block of 2 entries
 Cross block entry 1
 Get Retrieval by index of relation 1:T2
 Index name T2_NDX [2:2]
 Keys: (1.CUST_NO = 10674) AND (1.PROD_NO = 161255)
 Bool: (1.CMP_NO = 1) AND (1.DIV_NO = 1)
 Cross block entry 2
 Conjunct: 0.QUOTE = 0
 Index only retrieval of relation 0:T1
 Index name T1_NDX [4:4]
 Keys: (0.DIV_NO = 1.DIV_NO) AND (0.PROD_NO = 1.PROD_NO)
 AND (0.CUST_NO = 1.CUST_NO) AND
 (0.CMP_NO = 1.CMP_NO) <== Note 2
 T2.PRICE_AMT
 29.12
 29.12
2 rows selected

Note 2: 1.CMP_NO references table T2 in the cross
 block entry 2 where context 1 is already made available in
 the cross block entry 1.

It also works if the optimizer statistics are collected by running RMU /COLLECT
OPTIMIZER_STATISTICS on table T1.

Tables:
 0 = T1
 1 = T2
Cross block of 2 entries
 Cross block entry 1
 Conjunct: 0.QUOTE = 0
 Conjunct: 0.DIV_NO = 1
 Conjunct: 0.CMP_NO = 1
 Index only retrieval of relation 0:T1
 Index name T1_NDX [5:5] Direct lookup

Oracle® Rdb for OpenVMS

6.1.11 Query With Join Predicates on Leading Segments and Equality Filters Returns Wrong Results144

 Keys: (0.CMP_NO = 1) AND
 (0.DIV_NO = 1) AND (0.PROD_NO = 161255) AND
 (0.CUST_NO = 10674) AND (0.QUOTE = 0) <== Note3
 Cross block entry 2
 Conjunct: (0.CMP_NO = 1.CMP_NO) AND (0.DIV_NO = 1.DIV_NO)
 Get Retrieval by index of relation 1:T2
 Index name T2_NDX [2:2]
 Keys: (0.CUST_NO = 1.CUST_NO) AND (0.PROD_NO = 1.PROD_NO)
 Bool: (1.CMP_NO = 1) AND (1.DIV_NO = 1) AND (1.CUST_NO =
 10674) AND (1.PROD_NO = 161255)
 CQD.PRICE_AMT CQD.COST_AMT CQD.DEAL_AMT
 29.12 27.85 1.50
 29.12 27.85 1.50
2 rows selected

Note3: Only table context 0 is referenced in the cross block entry 1.
 No reference is made to context 1 of table T2.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.12 Query With Transitive Join Predicates and Non−equality
Filter Bugchecks

Bug 2207963

The following query, which worked in previous releases, bugchecks in Oracle Rdb Release 7.1.0.1.

set flags 'strategy,detail';

select T1.PROC_CD, T1.SYS_CD,
 T2.RUN_NBR, T2.CALENDER, T2.PROC_COD
 From T1, T2, T3
 where T2.SYS_CD = T1.SYS_CD
 AND T2.PROC_CD = T1.PROC_CD
 AND T2.SEQ_NBR = T1.SEQ_NBR
 AND T2.CYCLE_CD = T1.CYCLE_CD
 AND T2.PROFIL_CD = T1.PROFIL_CD

 AND T3.SYS_CD = T2.SYS_CD
 AND T3.PROC_CD = T2.PROC_CD
 AND T3.DAY_DATE = T2.CALENDER
 AND T3.SEQ_NBR = T2.SEQ_NBR
 AND T3.RUN_NBR = T2.RUN_NBR
 AND T3.CYCLE_CD = T2.CYCLE_CD
 AND T3.PROFIL_CD = T2.PROFIL_CD

 AND T1.SYS_CO = 'CPD'
 AND T2.CALENDER <= '15−JAN−2002'
 ;

Note: All the leading segments except the last one in T2_NDX index
 are used as join predicates.

Indexes on table T2:
T2_NDX with column SYS_CD
 and column PROC_CD
 and column CALENDER
 and column SEQ_NBR

Oracle® Rdb for OpenVMS

6.1.12 Query With Transitive Join Predicates and Non−equality Filter Bugchecks 145

 and column RUN_NBR
 and column CYCLE_CD
 and column PROFIL_CD
 and column PROC_COD

The key parts of this query which contributed to the situation leading to the error are these:

The query joins 3 tables, T1, T2, and T3, where table T1 and T3 are joined via transitive selection
predicates, such as "T1.col = T2.col and T2.col = T3.col".

1.

Almost all of the leading segments, except the last one in the index T2_NDX, are referenced in the
transitive predicates.

2.

The filter predicate that references the 3rd leading segment, CALENDER, is a non−equality using
"<=" operator.

3.

As a workaround, the query works if the SQL flag TRANSITIVITY is turned off.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.13 Query With OR Predicates, Including Two Similar IS NULL
Clauses, Returns Wrong Results

Bug 2177832

The following query with OR predicates, including two similar IS NULL clauses, should return 8 rows but
instead returns 0 rows:

set flags 'strategy,detail';

select police.no_contra, police.cd_typol
from CMFasssoc asssoc, CMFpolice police, CMFassfam assfam, CMFserpol serpol
where
asssoc.statut <> 2
and asssoc.no_assure = 1670
and police.no_assure = asssoc.no_assure
and police.statut <> 2
and ((police.no_contra is null)
 or (police.no_contra is NOT null AND POLICE.CD_TYPOL <> 0)
)
and assfam.no_assure = asssoc.no_assure
and assfam.statut <> 2
and serpol.no_assure = asssoc.no_assure
and serpol.no_police = police.no_police
and serpol.datd_mfac in (select max(serpol2.datd_mfac)
 from CMFserpol serpol2
 where serpol2.no_assure = asssoc.no_assure
 and serpol2.no_police = police.no_police
)
;
Tables:
 0 = CMFASSSOC
 1 = CMFPOLICE
 2 = CMFADCLI2
 3 = CMFSERPOL
 4 = CMFSERPOL
Cross block of 4 entries
 Cross block entry 1

Oracle® Rdb for OpenVMS

6.1.13 Query With OR Predicates, Including Two Similar IS NULL Clauses, Returns Wrong Results146

 Conjunct: 2.NO_CLI = 0.NO_ASSURE
 Match
 Outer loop
 Conjunct: 2.STATUT <> 2
 Conjunct: (2.TYP_CLI = 1) AND (2.CFCA_CLI2 = 1) AND (2.TYP_CLIRE = 2)
 Leaf#01 Sorted 2:CMFADCLI2 Card=2
 Bool: 2.NO_CLI = 1670
 FgrNdx CMFADCLI2_I1 [3:3] Fan=9
 Keys: (2.NO_CLI = 1670) AND (2.TYP_CLI = 1) AND (2.CFCA_CLI2 = 1)
 BgrNdx1 CMFADCLI2_I2 [1:1] Fan=9
 Keys: 2.TYP_CLIRE = 2
 Bool: (2.NO_CLI = 1670) AND (2.TYP_CLI = 1) AND (2.CFCA_CLI2 = 1)
 Inner loop (zig−zag)
 Conjunct: (0.STATUT <> 2) AND (0.NO_ASSURE = 1670)
 Get Retrieval by index of relation 0:CMFASSSOC
 Index name CMFASSSOC_I1 [1:1]
 Keys: 0.NO_ASSURE = 1670
 Cross block entry 2
 Conjunct: 2.STATUT <> 2
 Leaf#02 FFirst 1:CMFPOLICE Card=2
 Bool: (0.STATUT <> 2) AND (0.NO_ASSURE = 1670) AND (1.NO_ASSURE =
 0.NO_ASSURE) AND (2.NO_CLI = 0.NO_ASSURE)
 BgrNdx1 POLICE_H_IDX_1 [1:1] Fan=1
 Keys: 1.NO_ASSURE = 0.NO_ASSURE
 Bool: 1.NO_ASSURE = 1670
 BgrNdx2 CMFPOLICE_I2 [0:1,1:1] Fan=12
 Keys: r0: NOT MISSING (1.NO_CONTRA)
 r1: MISSING (1.NO_CONTRA)
 Cross block entry 3
 Aggregate: 0:MAX (4.DATD_MFAC)
 Conjunct: (1.STATUT <> 2) AND <error: missing expression> <== NOTE (1)
 AND (1.CD_TYPOL <> 0)
 Conjunct: 4.NO_POLICE = 1.NO_POLICE
 Get Retrieval by index of relation 4:CMFSERPOL
 Index name SERPOL_H_IDX_1 [1:1]
 Keys: 4.NO_ASSURE = 0.NO_ASSURE
 Bool: 4.NO_ASSURE = 1670
 Cross block entry 4
 Conjunct: (3.NO_POLICE = 1.NO_POLICE) AND (3.DATD_MFAC = <agg0>)
 Get Retrieval by index of relation 3:CMFSERPOL
 Index name SERPOL_H_IDX_1 [1:1]
 Keys: 3.NO_ASSURE = 0.NO_ASSURE
 Bool: 3.NO_ASSURE = 1670
0 rows selected

NOTE (1) : Error in the conjunct indicates some expression is missing.
 This is the cause of the problem.

The key parts of this query which contributed to the situation leading to the error are these:

The query joins 3 tables and one simple view.1.
The WHERE clause includes several join predicates, some filter predicates and an IN clause on a
subquery.

2.

One of the filter predicates contains an OR expression with similar IS NULL clauses on each branch.3.

As a workaround, the query works if the SQL flag 'MAX_STABILITY' is set.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.1.13 Query With OR Predicates, Including Two Similar IS NULL Clauses, Returns Wrong Results147

6.1.14 Query Slows Down Using Full Index Scan [0:0]

Bug 1635351

A query that worked well in Oracle Rdb Release 7.0.1.2 became much slower in Oracle Rdb Release 7.0.6
using full index scan. Even if the customer uses the same outline as before, the performance does not improve.
Here is the query:

select h.hnmei_id,
 h.hnmei_nm
from pm_zumen_v p,
 zumen_v z,
 hinmei_v h
where p.hinban = '000704419' and
 p.zuban = z.zuban and
 z.teisei_kgo in (select max(z1.teisei_kgo)
 from zumen_v z1
 where z.zuban = z1.zuban) and
 z.zuban = h.zuban and
 z.teisei_kgo = h.teisei_kgo

The Oracle Rdb Release 7.0.1.2 strategy chosen was the following:

Cross block of 4 entries
 Cross block entry 1
 Index only retrieval of relation PM_ZUMEN
 Index name IDX_PM_ZUMEN_0 [1:1]
 Cross block entry 2
 Conjunct Index only retrieval of relation ZUMEN
 Index name IDX_ZUMEN_0 [1:1]
 Cross block entry 3
 Conjunct Aggregate Index only retrieval of relation ZUMEN
 Index name IDX_ZUMEN_0 [2:2] Min key lookup
 Cross block entry 4
 Index only retrieval of relation HINMEI
 Index name IDX_HINMEI_0 [3:3]
0 rows selected

The Oracle Rdb Release 7.0.6 strategy chosen was the following:

Cross block of 3 entries
 Cross block entry 1
 Conjunct
 Match
 Outer loop
 Index only retrieval of relation ZUMEN
 Index name IDX_ZUMEN_0 [0:0] <−− full index scan
 Inner loop (zig−zag)
 Aggregate Index only retrieval of relation ZUMEN
 Index name IDX_ZUMEN_0 [0:0] <−− full index scan
 Cross block entry 2
 Conjunct Index only retrieval of relation PM_ZUMEN
 Index name IDX_PM_ZUMEN_0 [1:1]
 Cross block entry 3
 Index only retrieval of relation HINMEI
 Index name IDX_HINMEI_0 [3:3]
0 rows selected

Oracle® Rdb for OpenVMS

6.1.14 Query Slows Down Using Full Index Scan [0:0] 148

There is no known workaround for this problem. Even an outline that switches from match to cross strategy is
unable to apply full index scan.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.15 Poor Choice of Indexes by Dynamic Optimizer

Bug 703558

A query that worked well in Oracle Rdb Release 6.0 took ten times longer to execute in Oracle Rdb Release
7.0. The problem was attributed to a poor choice of indexes used by the dynamic optimizer. Here is the query:

select a.ass_asset_code, a.ass_asset_name, i.tot_clients, i.tot_value
 from (select ass_asset_code,
 count (*) as tot_clients,
 sum(asset_value) as tot_value
 from investment
 where dlr_dealer_id starting with '' <−− note
 and ofc_office_id starting with '0119027BO01' <−− note
 and adv_adviser_id starting with '' <−− note
 and cln_service_type starting with '' <−− note
 group by ass_asset_code) i,
 asset a
 where i.ass_asset_code = a.ass_asset_code
 order by a.ass_asset_code asc;

The WHERE clause includes these conditions:

 dlr_dealer_id starting with ''
 ofc_office_id starting with '0119027BO01'
 adv_adviser_id starting with ''
 cln_service_type starting with ''

The Oracle Rdb 6.0 strategy chosen was the following:

Conjunct
Match
 Outer loop
 Merge of 1 entries
 Merge block entry 1
 Aggregate Sort
 Leaf#01 BgrOnly INVESTMENT Card=383229
 BgrNdx1 INVESTMENT_NDX_7 [1:1] Fan=14 <−− note
 BgrNdx2 INVESTMENT_NDX_6 [1:1] Fan=14 <−− note
 BgrNdx3 INVESTMENT_NDX_5 [1:1] Fan=14 <−− note
 BgrNdx4 INVESTMENT_NDX_3 [1:1] Bool Fan=7 <−− note
 Inner loop (zig−zag)
 Get Retrieval by index of relation ASSET
 Index name ASSET_NDX_2 [0:0]

Use of four background indexes makes sense because each has a different leading segment (column) matching
one of the STARTING WITH clauses. The execution trace (not shown) indicates that the background scanned
BgrNdx2 (INVESTMENT_NDX_6) to completion, but aborted all other scans due to reaching FtchLim. This
also makes sense because the leading segment of this index is OFC_OFFICE_ID, which is the only column

Oracle® Rdb for OpenVMS

6.1.15 Poor Choice of Indexes by Dynamic Optimizer 149

for which a real value is provided in the STARTING WITH clause. In other words, Rdb is able to retrieve the
necessary rows using index INVESTMENT_NDX_6 without having to do a full index scan.

The Oracle Rdb 7.0 strategy chosen was the following:

Conjunct
Match
 Outer loop
 Merge of 1 entries
 Merge block entry 1
 Aggregate Sort
 Leaf#01 BgrOnly INVESTMENT Card=383229
 BgrNdx1 INVESTMENT_NDX_3 [1:1] Bool Fan=7 <−− note
 BgrNdx2 INVESTMENT_NDX_1 [1:1] Bool Fan=5 <−− note
 Inner loop (zig−zag)
 Get Retrieval by index of relation ASSET
 Index name ASSET_NDX_2 [0:0]

Note that INVESTMENT_NDX_6 was not selected as a candidate index. This means that whichever index is
chosen, a full index scan will have to be performed since the STARTING WITH clauses on these indexes
have values of an empty string (''). The end result is that there is an order of magnitude more I/O for Oracle
Rdb 7.0.

The new strategy after the fix is as follows.

Conjunct
Match
 Outer loop
 Merge of 1 entries
 Merge block entry 1
 Aggregate Sort
 Leaf#01 BgrOnly INVESTMENT Card=383229
 BgrNdx1 INVESTMENT_NDX_1 [1:1] Bool Fan=5
 BgrNdx2 INVESTMENT_NDX_8 [1:1] Fan=14
 BgrNdx3 INVESTMENT_NDX_5 [1:1] Fan=14
 BgrNdx4 INVESTMENT_NDX_6 [1:1] Fan=14
 BgrNdx5 INVESTMENT_NDX_7 [1:1] Fan=14
 BgrNdx6 INVESTMENT_NDX_4 [1:1] Fan=10
 Inner loop (zig−zag)
 Get Retrieval by index of relation ASSET
 Index name ASSET_NDX_2 [0:0]

As a workaround, a query outline can be used. However, in Oracle Rdb Release 7.0.1.2, the version under
which the problem was reported, it was not possible to work around the problem by defining a query outline.
That was a separate problem. A correction to allow a query outline to be used in this case became available in
Oracle Rdb Release 7.0.2.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.16 UNION Query With Constant Column Returns Wrong
Results

Bug 2231693

Oracle® Rdb for OpenVMS

6.1.16 UNION Query With Constant Column Returns Wrong Results 150

The following UNION query with constant column should return 1 row.

set flags 'strategy,detail';

create table t1 (art_no char(12), art_rev char(12));
create table t2 (art_no char(12), art_rev char(12));
insert into t1 values ('053 2021−120', ' ');
create view t1_view
 as select
 art_no, art_rev from t1;
create view t2_view
 as select
 art_no, art_rev from t2;

select v.art_no, v.art_rev
from (
 select adr.*, 'X' as RevType
 from t2_view adr
 union
 select a.*, ' ' as RevType
 from t1_view a
) v
where
 v.art_no = '053 2021−120' and
 RevType = ' ' ;

Tables:
 0 = T2
 1 = T1
Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
 Conjunct: 'X' = ' ' <== Note 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 0.ART_NO = '053 2021−120'
 Conjunct: 'X' = ' '
 Get Retrieval sequentially of relation 0:T2
 Merge block entry 2
 Conjunct: 1.ART_NO = '053 2021−120'
 Conjunct: ' ' = ' '
 Get Retrieval sequentially of relation 1:T1
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The query selects from the derived table of 2 unioned subselect queries which select all columns plus
additional constant column from the simple view of each table.

1.

The WHERE clause contains the equality predicate referencing the constant column of the unioned
derived table.

2.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.1.16 UNION Query With Constant Column Returns Wrong Results 151

6.1.17 Query With CAST Function Using Ranked Index Signals
Exception Error

Bug 2235593

The following query with CAST function using ranked index signals an exception error:

create table t1 (y2k smallint, data_id char(11), proj_id char(6));
insert into t1 values (20,'20020202','2915');
create unique index t1_i1 on t1 (y2k, data_id) type is sorted ranked;
create unique index t1_i2 on t1 (proj_id) type is sorted;

select * from t1 where
 proj_id='2915' and
 cast (data_id as integer) = 20020202;
Leaf#01 FFirst 0:T1 Card=1
 Bool: (0.PROJ_ID = '2915') AND (CAST (0.DATA_ID AS INT) = 20020202)
 BgrNdx1 T1_I1 [0:0] Fan=12
 Bool: CAST (0.DATA_ID AS INT) = 20020202
 BgrNdx2 T1_I2 [1:1] Fan=16
 Keys: 0.PROJ_ID = '2915'
%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−COSI−F−INPCONERR, input conversion error

The key parts of this query which contributed to the situation leading to the error are these:

The query contains a WHERE clause with 2 equality predicates. One of the predicates uses the CAST
function.

1.

The query uses dynamic optimizer strategy with 2 background indices, where the first one is a ranked
index.

2.

The first background index has 2 segments, where the second segment is referenced by the CAST
function in the WHERE clause.

3.

As a workaround, the query works if the dynamic optimizer is disabled by setting the SQL flag
MAX_STABILITY.

select * from t1 where
 proj_id='2915' and
 cast (data_id as date vms) = '02−Feb−2002';
Leaf#01 FFirst 0:T1 Card=1
 Bool: (0.PROJ_ID = '2915') AND (CAST (0.DATA_ID AS DATE VMS) = '02−FEB−2002')
 BgrNdx1 T1_I1 [0:0] Fan=12
 Bool: CAST (0.DATA_ID AS DATE VMS) = '02−FEB−2002'
 BgrNdx2 T1_I2 [1:1] Fan=16
 Keys: 0.PROJ_ID = '2915'
 Y2K DATA_ID PROJ_ID
 20 20020202 2915
1 row selected

The query also works if t1_i1 is a non−ranked sorted index:

drop index t1_i1;
create unique index t1_i1 on t1 (y2k, data_id) type is sorted ;

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.1.17 Query With CAST Function Using Ranked Index Signals Exception Error 152

6.1.18 External Functions Cannot Init, Reason 22

After upgrading to a newer OpenVMS version (e.g. V7.3), external functions that are "bind on server site"
may fail to execute giving these errors:

%RDB−E−EXTFUN_FAIL, external routine failed to compile or execute successfully
−RDMS−E−EXTABORT, routine XXXXXX execution has been aborted
−RDMS−E−RTNSBC_INITERR, Cannot init. external routine server site executor;
reason 22

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.19 Bugchecks at PSII2SCANSTARTBBCSCAN

In prior releases of Oracle Rdb, it was possible that a query involving SORTED RANKED indexes could
bugcheck when trying to establish a scan of a duplicate node.

***** Exception at 00A2EA30 : PSII2SCANSTARTBBCSCAN + 000004F8
%COSI−F−BUGCHECK, internal consistency failure

This condition only occurs with SORTED RANKED indexes where a sequence of inserts, updates and deletes
of the same duplicate values force the production of an overflow duplicates node but subsequent deletes
remove the duplicate entries that are on the primary index node for that duplicate value.

A possible workaround for this problem is to rebuild the sorted ranked index.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.20 Cursor on Ranked Index Returned too Many Records

Bug 2270786

A problem in the way the current record offset was determined for SORTED RANKED index duplicate
entries may cause Oracle Rdb to return the same record twice on a table cursor fetch.

This problem would only occur given the following circumstances:

A cursor is established on a table and strategy shows that a sorted ranked index will be used to
retrieve the records.

•

The cursor fetch returned the first duplicate record in a duplicate entry with exactly two duplicates.•
The same process with this cursor open inserts a new record into or removes another record from the
same table.

•

The insert or delete happened to update the same index node currently referenced by the cursor.•

In this situation, Oracle Rdb must invalidate the current fetch scan and re−establish its currency. However, the
currency was incorrectly set to the first duplicate in the current entry, hence returning this record a second
time on the next fetch.

Workarounds for this problem include:

Oracle® Rdb for OpenVMS

6.1.18 External Functions Cannot Init, Reason 22 153

Rebuilding the index may provide a temporary workaround for this problem.•
Change the processing of the records so as to not interleave fetches and inserts in the same process in
this manner.

•

Alternatively, rebuild the index as a normal SORTED index.•

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.21 Changed Default Behavior for Bitmapped Scan
Optimization

Prior to this release of Oracle Rdb, bitmapped scan optimization was enabled by default when the dynamic
optimizer found two or more sorted ranked indexes that could be used to satisfy the query being optimized.

This default behavior has now been changed. Bitmapped scan optimizations must now be explicitly enabled.

Bitmapped scan optimization retrieval can be enabled using the debug flag 'BITMAPPED_SCAN'.

For example:

SQL> set flags 'BITMAPPED_SCAN';

This new behavior is in Oracle Rdb Release 7.1.0.2.

6.1.22 Bugcheck (ACCVIO) On Simple Select Statement

Bug 2298278

Some queries may generate bugchecks as shown in the following example.

SQL> SELECT NN, PTYPE, AMOUNT
cont> FROM TABLE1
cont> WHERE BNAME = 'ANYBODY' AND
cont> NN > DATE VMS '12−FEB−2001';
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TEST]RDSBUGCHK.DMP;

The exception reported in the bugcheck dump file is:

***** Exception at 01F81EB8 : symbol not found
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=000000004FFFFFD2, PC=0000000001F81EB8, PS=0000000B

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.23 Privileged User Bugcheck (ACCVIO)

Bug 2297264

A privileged user with no access granted to the database could receive an ACCVIO error and a bugcheck
when executing actions outside of a transaction (for example, calling a stored procedure).

Oracle® Rdb for OpenVMS

6.1.21 Changed Default Behavior for Bitmapped Scan Optimization 154

The following example shows the bugcheck exception report:

***** Exception at 00000004 : symbol not found
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
 address=0000000000000004, PC=0000000000000004, PS=0000000B

A possible workaround is to grant access to the user.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.24 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 00000594

Bug 1879372

In rare cases of relatively high system load with intensive access to cached records between read−write and
read−only processes, it was possible for a read−only process to fail with an exception at
DIOCCH$FETCH_SNAP_SEG + 00000594.

This bugcheck was due to incorrect memory access ordering. Read−only processes would sometimes get an
incorrect snapshot page pointer and find that the snapshot page was not for the matching live page.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.1.25 Unresolved 2PC Transactions Rolled Back by
RMU/RECOVER

Bug 2278911

When an RMU/RECOVER process completed processing the last journal specified, if the database was
involved in a two−phase commit (2PC) transaction and the transaction was prepared but not yet committed
(an "unresolved" transaction) when journal processing was complete, RMU/RECOVER would sometimes
rollback the prepared transaction. Also, the "Current roll−forward sequence number" would be advanced to
the next journal even though a transaction from the current journal was not completed.

This behavior was incorrect since unresolved transactions should be considered still active and must remain
active until a commit or rollback record is found in the journal or the user explicitly instructs
RMU/RECOVER to commit or abort the 2PC transaction. Advancing the "Current roll−forward sequence
number" also allowed subsequent RMU/RECOVER commands to not require the journal(s) that contained the
unresolved transaction. If the journal(s) containing the unresolved transaction was not applied again, the
unresolved transaction would be lost.

When this situation occurred, output similar to the following would be observed from the RMU/RECOVER
command:

%RMU−I−AIJACTIVE, 1 active transaction not yet committed or aborted
%RMU−I−LOGRECSTAT, transaction with TSN 0:143 is active
%RMU−I−AIJPREPARE, 1 of the active transactions prepared but not yet committed
or aborted
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 1

Oracle® Rdb for OpenVMS

6.1.24 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 00000594 155

%RMU−I−LOGRECSTAT, transaction with TSN 0:143 rolled back
.
.
.
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1

Note that in this example the active transaction was rolled back even though it was not yet resolved. Also, the
sequence number was advanced to the next journal even though the active transaction had not been resolved.

One situation where this could occur is when the prepare record was stored in one journal but the commit
record was stored in the next journal. In that situation, the transaction could be lost if multiple
RMU/RECOVER commands were used to recover the database. To prevent that from occurring, all available
journals should be specified in a single RMU/RECOVER command. That is, there shouldn't be a separate
RMU/RECOVER command issued for each journal; all journals must be applied by a single
RMU/RECOVER command.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. At the end of journal processing, if there is an
unresolved transaction still active, the transaction will remain active and the "Current roll−forward sequence
number" will not be advanced.

Oracle® Rdb for OpenVMS

6.1.24 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 00000594 156

6.2 SQL Errors Fixed

6.2.1 Queries Ending in Reserved Words Fail to Execute in
Dynamic SQL

Bug 2088594

If the final token of a query is a column whose name is a reserved word then the query may fail with
SQL−F−PREMATURE_EOF. However, if extra syntax is added to the query it will work. Similarly, if the
column is prefixed with the table name or correlation name (such as TT.POSITION) then the query succeeds.

The following example shows the problem using a dynamic SQL program. When the query is extended by
adding an additional column to the ORDER BY clause, the query succeeds.

>> CREATE TABLE TT (AA INT, POSITION INT)
>> INSERT INTO TT (AA, POSITION) VALUES (1, 1)
>> INSERT INTO TT (AA, POSITION) VALUES (1, 2)
>> SELECT * FROM TT ORDER BY POSITION
error: −1...
error text:
%SQL−F−PREMATURE_EOF, Statement is syntactically incomplete
>> SELECT * FROM TT ORDER BY POSITION, AA
out: 0: 0
out: 1: 0
 0/AA: INTEGER:1
 1/POSITION: INTEGER:1
 0/AA: INTEGER:1
 1/POSITION: INTEGER:2
>> ROLLBACK

The problem in this case is that POSITION is valid starting syntax for the POSITION function. Dynamic SQL
requests the next token which is expected to be the start of the function argument list. However, an exception
is raised because dynamic SQL does not permit continuations of statements. Similar problems occur if column
names such as TRIM and SUBSTRING are used.

If this query was executed by interactive SQL, then the terminating semicolon (;) would indicate that the
builtin function was not being used and the name would then be treated as a column name.

To solve this problem, the next release of dynamic SQL will permit an optional terminating semicolon (;). If
more tokens are requested (as in this problem case), an implicit semicolon will be provided by SQL and the
failing syntax may succeed.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.2 SQL$MOD Compiler Does Not Recognize G_FLOAT with
COBOL

Bug 1149572

6.2 SQL Errors Fixed 157

COBOL on OpenVMS VAX supports D_FLOAT floating point format but not G_FLOAT floating point
format. COBOL on OpenVMS Alpha added support for G_FLOAT floating point format. However, the
Oracle Rdb SQL Module language precompiled (SQL$MOD) produced a warning message for use of
G_FLOAT floating point format.

For example, suppose a SQL Module Language program for the COBOL language declared a procedure with
a parameter called ":P_FLOATFLD" which is of type "FLOAT". In this case, if the program is compiled with
a /G_FLOAT qualifier, SQL$MOD would flag the declaration as having an unsupported datatype as follows:

SQLMOD /G_FLOAT EXAMPLE_PROG.SQLMOD
 :P_FLOATFLD FLOAT);
 1
%SQL−W−LANUNSDTP, (1) COBOL does not support the data type for parameter
P_FLOATFLD

This program will now compile without warnings on OpenVMS Alpha. The warning still (appropriately)
appears for OpenVMS VAX.

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.3 Unexpected UNSDTPCVT Error Reported for NULL in
UNION Statement

In Oracle Rdb Release 7.1.0.1, data type checking for UNION was improved to better support character set
assignments. However, this change introduced a problem with NULL expression processing as shown in the
following example:

SQL> select NULL as literal_suffix
cont> from rdb$database
cont> union
cont> select '''' as literal_suffix
cont> from rdb$database;
%SQL−F−UNSDTPCVT, Unsupported data type conversion
SQL>
SQL> select NULL
cont> from rdb$database
cont> union
cont> select ''''
cont> from rdb$database;
%SQL−F−UNSDTPCVT, Unsupported data type conversion
SQL>
SQL> select NULL
cont> from rdb$database
cont> union
cont> select '''' as literal_suffix
cont> from rdb$database;
%SQL−F−UNSDTPCVT, Unsupported data type conversion

SQL is now trying to process the special character set for the NULL and reporting this error:
%SQL−F−UNSDTPCVT, Unsupported data type conversion.

Oracle® Rdb for OpenVMS

6.2.3 Unexpected UNSDTPCVT Error Reported for NULL in UNION Statement 158

The workaround is to reverse the SELECT statements in the UNION clause so that the NULL expression is
processed last.

SQL> select '''' as literal_suffix
cont> from rdb$database
cont> union
cont> select NULL as literal_suffix
cont> from rdb$database;
 LITERAL_SUFFIX
 '
 NULL
2 rows selected
SQL>
SQL> select ''''
cont> from rdb$database
cont> union
cont> select NULL as literal_suffix
cont> from rdb$database;

 '
 NULL
2 rows selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.4 Precompiled SQL Does Not Recognize a C Function With a
Struct Return Type

Bug 1274182

If a C function's return type was a struct type, then Precompiled SQL didn't recognize it as a function. Instead
it processed it as a variable and also threw away everything up to the next semicolon.

The following example shows a C function ("my_program") which SQL$PRE didn't recognize as a function
because of its return type:

 struct my_struct
 {
 int rcn;
 } my_struct;

 EXEC SQL DECLARE ALIAS FOR FILENAME mf_personnel;

 struct my_struct my_program(char *first_name, char *last_name)
 {
 char lcl_last_name[256];
 EXEC SQL SELECT last_name INTO :lcl_last_name FROM employees
 WHERE last_name = :last_name
 AND first_name = :first_name;
 return my_struct;
 }

The following interactive session shows the errors generated by SQL$PRE because it does not recognize
"my_program" as a function. Since it ignores everything until the next semicolon, it doesn't recognize the
function parameters or the host variable "lcl_last_name".

Oracle® Rdb for OpenVMS

6.2.4 Precompiled SQL Does Not Recognize a C Function With a Struct Return Type 159

POLLUX> SQL$PRE/CC test_program.sc;
 WHERE last_name = :last_name
 1
%SQL−F−HVNOTDECL, (1) Host variable last_name was not declared
 EXEC SQL SELECT last_name INTO :lcl_last_name FROM employees
 1
%SQL−F−HVNOTDECL, (1) Host variable lcl_last_name was not declared
POLLUX>

The problem can be avoided by declaring the struct in a typedef and then using the resulting user defined type
as the return type of the function.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.5 CREATE INDEX Placing Keys in Wrong Partition

Bug 2217239

Recently a problem has been found with the CREATE INDEX statement. This applies to the RDO DEFINE
INDEX statement as well as the implicit CREATE INDEX performed by the SQL and RDO IMPORT
statements.

If an index is partitioned on a single CHAR or VARCHAR column and that column is longer than 8 octets,
then CREATE INDEX may place the index keys on the wrong partition when processing data currently in the
table.

The Oracle Rdb 7.1 index scan optimization aborts the scan after the partition end is reached and so does not
find the misplaced index keys. This will result in incorrect query results.

There is no known workaround for this problem. Please note that once the corrected version of Oracle Rdb is
installed, the affected indices should be dropped and recreated.

This problem is not present in indices with the following characteristics:

the index is not partitioned,•
has more than one column for the partitioning key (i.e. more than one column listed in the USING
clause),

•

has a data type other than CHAR or VARCHAR,•
is of type CHAR or VARCHAR with a length less than or equal to 8 octets,•
uses DESC or MAPPING VALUES clauses,•
based on a column with COLLATING SEQUENCE,•
any index created with Oracle Rdb 7.0 and present in the database when converted with
RMU/CONVERT

•

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.6 ALTER INDEX ... TRUNCATE PARTITION Results in Bad
Query Results

Bug 2206069

Oracle® Rdb for OpenVMS

6.2.5 CREATE INDEX Placing Keys in Wrong Partition 160

Recently a problem has been found with the ALTER INDEX ... TRUNCATE PARTITION statement.

The TRUNCATE PARTITION statement was not correctly setting the index to build−pending state and
therefore the optimizer was erroneously using the partial index for data retrieval, which could result in
incorrect query results.

If the index has been altered to MAINTENANCE IS DISABLED, then the TRUNCATE PARTITION
statement can successfully be used to truncate parts of the index. In this case, the optimizer will not use this
disabled index for query solutions.

As a workaround for this problem, use ALTER INDEX ... TRUNCATE ALL PARTITIONS instead of
ALTER INDEX ... TRUNCATE PARTITION for each partition. Alternately, use ALTER INDEX ...
MAINTENANCE IS DISABLED before using ALTER INDEX ... TRUNCATE PARTITION for each
partition.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.7 ALTER INDEX ... BUILD ALL PARTITIONS Not Writing Back
SORTED Index Root Dbkeys

Bugs 2195771 and 2199897

Recently, problems have been found with ALTER INDEX ... BUILD ALL PARTITIONS and ALTER
INDEX ... REBUILD ALL PARTITIONS statements when used with SORTED or SORTED RANKED
indices. Please do not use these statements until Oracle Rdb Release 7.1.0.2 or later has been installed.

The partition root dbkey for SORTED indices (both ranked and non−ranked) are not refreshed after the
ALTER INDEX statement completes.

If the index has been altered with MAINTENANCE IS DISABLED, then the resulting index will be
incomplete and may lead to incorrect query results or bugchecks.

If the index was processed with ALTER INDEX ... TRUNCATE ALL PARTITIONS, then the resulting index
appears to be empty and may also lead to incorrect query results.

The REBUILD ALL operation causes the logical area for the index to be implicitly truncated. Queries may
appear to function correctly but the pages are now marked for reuse and future updates will corrupt the
structure of the sorted index as these B−tree nodes are overwritten.

This is not a problem for HASHED indices since these types of indices do not require the update of
RDB$INDICES and RDB$STORAGE_MAP_AREAS tables with the root dbkeys.

As a workaround for this problem, the ALTER INDEX ... BUILD PARTITION and ALTER INDEX ...
REBUILD PARTITION statements, which operate on just one partition, do correctly write back the root
dbkeys and can be used as an alterative.

Use DROP INDEX and CREATE INDEX to rebuild the index structure.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.2.7 ALTER INDEX ... BUILD ALL PARTITIONS Not Writing Back SORTED Index Root Dbkeys161

6.2.8 IMPORT Fails With INVIDXATTR Error for Hashed Indexes

Bug 2211328

If a database was exported, imported, exported again and finally imported a second time, the second import,
under certain conditions, failed with an INVIDXATTR error for one or more hashed indexes.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The SQL IMPORT command no longer fails
with an INVIDXATTR error.

6.2.9 DDL Statements Generated Unexpected Runtime Errors

In previous releases of Oracle Rdb, it was possible for DDL (data definition language) statements embedded
in the SQL precompiler source (EXEC SQL) or in a SQL module language procedure to generate unexpected
errors at run time. This problem only occurred when the quote character (') had to be doubled when included
in a string literal.

Consider this CREATE TABLE example embedded in a C source module:

void sql_signal ();
main()
{
int SQLCODE = 0;
exec sql
 declare alias filename 'MF_PERSONNEL';
exec sql
 create table my_table1
 (name_q char(10) default '''');
if (SQLCODE != 0)
 sql_signal ();
exec sql rollback;
if (SQLCODE != 0)
 sql_signal ();
}

When this application is executed, the following error is reported:

%SQL−F−UNTSTR, Unterminated string found

The problem occurs because all DDL statements (such as CREATE TABLE) are processed as Dynamic
statements by SQL module language and the SQL precompiler. The saved version of the CREATE TABLE
statement is rewritten without processing the quoting character (') correctly.

In most cases, this problem would cause SQL−F−SYNTAX_ERR or %SQL−F−UNTSTR exceptions, but in
some cases two mismatched quotes may have unexpectedly captured syntax and the statement may have
executed correctly. See the following TRACE statement in a stored procedure for instance:

TRACE '''' || R.RDB$FIELD_NAME || '''';

This statement was saved as:

TRACE ''' || R . RDB$FIELD_NAME || ''';

Oracle® Rdb for OpenVMS

6.2.8 IMPORT Fails With INVIDXATTR Error for Hashed Indexes 162

which caused Trace to display the following text:

~Xt: ' || R . RDB$FIELD_NAME || '

This problem has been corrected in Oracle Rdb Release 7.1.0.2. SQL now encodes the quoted string correctly
for use with dynamic SQL. Any applications that suffer from this problem must be recompiled using the
corrected version of Rdb.

6.2.10 INSERT Cursor on a Derived Table Would Bugcheck

In prior releases of Oracle Rdb, SQL did not prevent a derived table from being used as the target for an
INSERT cursor. While the DECLARE and OPEN for the cursor apparently succeeded, attempts to use the
cursor would generate a bugcheck as shown below.

SQL> declare ONE insert only table cursor
cont> for select EMPLOYEE_ID
cont> from (select * from EMPLOYEES) as E;
SQL> OPEN ONE;
SQL> INSERT INTO CURSOR ONE VALUES ('00000');
%SQL−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TESTING]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=00000024,
PC=00239A72, PSL=03C00005

This problem has been corrected in Oracle Rdb Release 7.1.0.2. SQL now issues an error when the
DECLARE CURSOR is detected.

SQL> declare ONE insert only table cursor
cont> for select EMPLOYEE_ID
cont> from (select * from EMPLOYEES) as E;
%SQL−F−NOUNION, UNION or derived table not valid in an INSERT or LIST CURSOR

6.2.11 CREATE TABLE Generates WISH_LIST for NULL Clause

Oracle Rdb Release 7.1.0.1 did not correctly support the NULL clause in the CREATE TABLE statement that
was introduced in Oracle Rdb Release 7.1.0. This clause was supported for Oracle RDBMS compatibility and
should have been ignored by Rdb. However, this clause generated the error as shown in the following
example:

SQL> create table supplier (
cont> suppid int not null,
cont> name varchar(80) null);
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−WISH_LIST, feature not implemented yet

The workaround is to remove the NULL clause from the CREATE TABLE statement.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The WISH_LIST error is no longer produced
by Rdb.

Oracle® Rdb for OpenVMS

6.2.10 INSERT Cursor on a Derived Table Would Bugcheck 163

6.2.12 Use of Synonyms Resulted in an Incorrect Query of
System Tables

Oracle Rdb Release 7.1.0.1 did not correctly support the use of synonyms when querying the system tables.
Specifically, when SQL needed to perform a query of the Oracle Rdb system tables, the synonym name was
used for the query. This behavior is incorrect. SQL should use the value of the synonym, not the synonym
itself.

One error which illustrates this incorrect behavior is included below. When processing the column definition,
SQL tries to fetch the DEFAULT and raises an exception.

create domain id_dom int;
create table tbl1 (id id_dom primary key deferrable, text char (5));
create table tbl2 (id id_dom, text char (7));
create synonym t1 for table tbl1;
create synonym t2 for table tbl2;
alter table t2
 alter column id
 constraint authentic_id references tbl1 (id) deferrable;
%RDB−F−BAD_SEGSTR_ID, invalid segmented string identifier

This problem has been corrected in Oracle Rdb Release 7.1.0.2. When querying the system tables, SQL
correctly uses the value of the synonym.

6.2.13 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK

Bug 2245763

In prior releases of Oracle Rdb, it was possible that some queries involving UNION and functions that
returned VARCHAR would bugcheck when using ORACLE LEVEL1 dialect.

***** Exception at 002A5844 : SQL$$GET_QUEUE_WALK + 00000244
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000080, PC=00000000002A5844, PS=0000001B

The following example shows this problem.

SQL> set dialect 'oracle level1';
SQL>
SQL> create module MMM
cont> language SQL
cont> function rtrim (in :a varchar (200), in: c varchar (200))
cont> returns varchar(200);
cont> return trim (both :c from :a);
cont> end module;
SQL>
SQL> select ' '
cont> from employees e
cont> union
cont> select rtrim(e.first_name,' ')
cont> from employees e;
%SQL−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TEST_DB]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000080, PC=00000000002A5844, PS=0000001B
SQL>

Oracle® Rdb for OpenVMS

6.2.12 Use of Synonyms Resulted in an Incorrect Query of System Tables 164

This problem was caused by erroneous processing of the implicit CASE expression wrapped around the
function call to produce Oracle RDBMS language semantics for zero length strings which are considered
equivalent to NULL.

A workaround would be to use SET DIALECT 'SQL92' before executing this query. In this dialect, no special
zero length string handling is required.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.14 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK

Bug 2272808

In prior releases of Oracle Rdb, it was possible that some queries involving UNION, COALESCE (or NVL)
builtin functions would bugcheck.

***** Exception at 003363D0 : SQL$$GET_QUEUE_WALK + 00000340
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000080, PC=00000000003363D0, PS=0000001B

The following example shows this problem.

SQL> create module MMM
cont> language SQL
cont> function fixstr (in :id integer,
cont> in :a char (20),
cont> in :b char (20),
cont> in :c char (20))
cont> returns char(20);
cont> return NULL;
cont> end module;
SQL>
SQL> select fixstr (1, last_name, first_name, middle_initial) as nm
cont> from employees
cont> where employee_id = '00164'
cont> union all
cont> select cast(coalesce(postal_code,
cont> fixstr (1, last_name, first_name, middle_initial)
cont>) as char(20)) as nm
cont> from employees
cont> where employee_id = '00164';
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TEST_DB]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000080, PC=00000000003363D0, PS=0000001B

This problem was caused by erroneous processing of the COALESCE expression wrapped around the
function call in the second leg of the UNION clause.

Note

The NVL function is a synonym for COALESCE.

A workaround would be to rewrite the COALESCE as a searched case expression. COALESCE (a, b, ..., z) is
equivalent to:

Oracle® Rdb for OpenVMS

6.2.14 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK 165

case
 when a is not NULL then a
 when b is not NULL then b
 ...
 else z
end

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.15 Multistatement Procedures Used with Connections
Resulted in %RDB−E−OBSOLETE_METADA Error Message

Bug 1879521

In prior releases of Oracle Rdb, there was a problem with multiple connections and the use of multistatement
procedures. Specifically, Oracle Rdb requires a special internal module to be set up for multistatement
procedures. In the case of two or more connections calling the same multistatement procedure, the module
setup was not done for the second connection. This was incorrect behavior and resulted in the following error
message:

%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer
exist

The correct behavior is to insure that the module setup is performed when a database switch occurs for the
first time.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.2.16 Privileges Not Honored For SET TRANSACTION

Bug 1668270

Oracle Rdb was not reverting to the privilege settings of the SQL/Services service owner for commands such
as SET TRANSACTION ... RESERVING, CREATE, ALTER and DROP.

The following example uses SQL*Plus and SQL*net for Rdb to execute a query and shows this behaviour.

SQL> set transaction read write reserving employees for protected write;
set transaction read write reserving employees for protected write;
*
ERROR at line 1:
ORA−01031: insufficient privileges

In fact, the current user is granted access to the EMPLOYEES table, but the service owner is not. A
workaround is to give the service owner the required privileges.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.2.15 Multistatement Procedures Used with Connections Resulted in %RDB−E−OBSOLETE_METADA Error Message166

6.3 Oracle RMU Errors Fixed

6.3.1 RMU Fails to Perform OPTIMIZER_STATISTICS Actions on
Some Databases

In prior versions of Rdb, attempts to use RMU/SHOW OPTIMIZER_STATISTICS, RMU/COLLECT
OPTIMIZER_STATISTICS, and related commands would fail if the default database character set was not
DEC_MCS.

The following example shows the problem for a DEC_KANJI database.

$ RMU /SHOW OPTIMIZER_STATISTICS DISK1:[TESTING]SAMPLE.RDB
%RDB−F−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−E−CSETBADCOMPARE, incompatible character sets prohibit the requested
comparison
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU−F−FTL_SHOW, Fatal error for SHOW operation at 29−OCT−2001 16:31:20.59

$ RMU /COLLECT OPTIMIZER_STATISTICS DISK1:[TESTING]SAMPLE.RDB
%RDB−F−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−E−CSETBADCOMPARE, incompatible character sets prohibit the requested
comparison
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU−F−FTL_ANA, Fatal error for ANALYZE operation at 29−OCT−2001 16:31:36.12

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.2 RMU/CONVERT Fails to Correctly Define the
RDB$WORKLOAD Table

When a database is converted to Rdb 7.1 and the optional system table RDB$WORKLOAD is present, Rdb
fails to correctly define the metadata for this table and SQL is unable to see the data type for the
RDB$NULL_FACTOR column.

The collection and utilization of workload data is unaffected by this problem. Only SQL applications are
affected.

The following is an example of a database incorrectly converted from Rdb 7.0 to Rdb 7.1:

SQL> show table rdb$workload
Information for table RDB$WORKLOAD

Columns for table RDB$WORKLOAD:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
RDB$CREATED DATE VMS
RDB$LAST_ALTERED DATE VMS
RDB$DUPLICITY_FACTOR BIGINT(7)
RDB$NULL_FACTOR Data type: 0
RDB$RELATION_ID INTEGER
RDB$FLAGS INTEGER
RDB$FIELD_GROUP CHAR(31)

6.3 Oracle RMU Errors Fixed 167

RDB$SECURITY_CLASS CHAR(20)

The RDB$NULL_FACTOR datatype is incorrectly interpreted. This will result in the following problem:

SQL> select rdb$null_factor from rdb$workload;
%SQL−F−FLDNOTCRS, Column RDB$NULL_FACTOR was not found in the tables in current
scope

A workaround for this problem is to have a sufficiently privileged user execute the following SQL command,
commit, and then have applications that use this column DISCONNECT and reattach to the database.

SQL> update rdb$relation_fields set rdb$field_source='RDB$SCALED_COUNTER'
cont> where rdb$field_source='RDB$PROBABILITY';

This problem is corrected in Oracle Rdb Release 7.1.0.2. Rdb now correctly defines the RDB$WORKLOAD
table during the RMU/CONVERT.

6.3.3 RMU Tape Density Problems Starting With OpenVMS
V7.2−1

Bugs 1362656 and 1432269

Starting with HP OpenVMS V7.2−1, there were density problems for RMU commands that allow tape density
values to be specified with the /DENSITY qualifier: RMU/BACKUP, RMU/BACKUP/AFTER_JOURNAL
and RMU/OPTIMIZE_AIJ. These problems resulted in one of the following tape density related errors being
returned when density values which were correct were specified. These values worked when specified in
RMU commands prior to OpenVMS V7.2−1. The problems occurred with tape cartridges initialized to the
new OpenVMS V7.2−1 MTD compaction values.

%RMU−E−DENSITY, TAPE_DEVICE:[000000]DATABASE.BCK; does not support specified
 density
%RMU−E−POSITERR, error positioning TAPE_DEVICE:

These problems resulted from problems in OpenVMS tape device drivers which were enhanced to handle the
new MTD (multiple tape density) values introduced in OpenVMS V7.2−1. These problems caused the device
drivers to incorrectly handle the existing tape density codes used prior to OpenVMS V7.2−1. These problems
exist in VMS (some have been corrected) and cannot be fixed by RMU. However, RMU has been changed to
avoid this problem by allowing the new MTD density codes to be specified by the /DENSITY command using
the following syntax.

/DENSITY=(new_density_value,[NO]COMPACTION)

The existing density values can continue to be specified using the same syntax as before.

/DENSITY=existing_density_value

Please see the New Feature documentation on this enhancement for a full description (Section 8.3.2).

The following example shows the error returned when a valid density code was specified for a tape device
with OpenVMS V7.2−1.

$RMU /BACKUP /DENSITY=70000 /REWIND /LABEL=(LABEL1,LABEL2) −

Oracle® Rdb for OpenVMS

6.3.3 RMU Tape Density Problems Starting With OpenVMS V7.2−1 168

MF_PERSONNEL TAPE1:MFP.BCK, TAPE2:
%RMU−E−POSITERR, error positioning TAPE1:

This problem could sometimes be avoided by initializing the tape with OpenVMS V7.2−1 commands and not
setting the density in the RMU command.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.4 RMU/VERIFY/ROOT Incorrectly Reports
RMU−E−BADAIJPN and/or RMU−E−AIJNOTFND

Previously, it was possible for the RMU/VERIFY/ROOT command to incorrectly attempt to access a
non−existant after−image journal file. This problem was caused by an incorrect bounds check that resulted in
one additional, non−existant, internal data structure being used. In very rare cases, this data structure appeared
to contain an incorrect (or blank) name of an after−image journal file.

For example, the following error might be displayed (note the two spaces between "file" and "not" in the
second message; this is where the filename would typically be displayed − in this case the name was blank):

$ RMU /VERIFY /ROOT THUNDER.RDB
%RMU−E−BADAIJPN, There is no name associated with AIJ entry 1.
%RMU−E−AIJNOTFND, expected after−image file not found
%RMU−W−ROOERRORS, 1 error encountered in root verification

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The RMU/VERIFY utility now only checks
the valid internal data structure for after−image journal files.

6.3.5 RMU/CONVERT Problem With Database Wide Default
Collating Sequence

Bug 2181768

There is a problem in Oracle Rdb RMU Release 7.1.0.1 and earlier 7.1 versions where, if a database with a
database−wide default collating sequence defined is converted from an earlier version to Oracle Rdb Release
7.1, the database is corrupted and unusable. This is because a collating sequence name value is not inserted in
the system field RDBVMS$COLLATION_NAME in the system table RDB$FIELD_VERSIONS for system
fields added or modified by the RMU/CONVERT. The error RDMS−F−UNLIKECOLL is returned by SQL
in queries involving system or user fields since the RDB$FIELD_VERSIONS system table gets referenced as
part of the processing of the SQL query. On a SHOW TABLE, a %COSI−F−FILACCERR error will occur.

The following example shows an error returned from SQL when a database with a system wide collating
sequence is accessed in SQL after it has been converted to Rdb Release 7.1.

In a prior Rdb version:

SQL> CREATE DATABASE ... TESTDB ... COLLATING SEQUENCE GERMAN GERMAN ...

In Rdb Release 7.1:

$RMU /CONVERT TESTDB.RDB
%RMU−I−CVTCOMSUC, CONVERT COMMITED for DUA0:[DB]TESTDB.RDB;1

Oracle® Rdb for OpenVMS

6.3.4 RMU/VERIFY/ROOT Incorrectly Reports RMU−E−BADAIJPN and/or RMU−E−AIJNOTFND169

SQL> SELECT * FROM TABLE1;
%RDB−F−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−F−UNLIKECOLL, fields of unlike collating sequence may not be
compared

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.6 RMU/BACKUP to Tape Could Hang and Not Finish

Bug 2136496

There is a problem in Oracle Rdb RMU Release 7.1.0.1 and earlier 7.1 versions where an RMU/BACKUP to
tape can hang and not finish. This is most likely to happen if the backup is to a single tape drive or in cases
where one storage area is still being read and written to tape when the other storage areas have already
finished. This occurs because of a scheduling problem which causes a writer thread to assume its reader
threads have finished when they are still active. This causes a deadlock situation where the writer thread keeps
looping waiting for its reader threads to release their resources while the reader threads are waiting for a
response from the writer thread.

A workaround for this problem is to use /READER_THREAD_RATIO=0 or READER_THREAD_RATIO=1
but this will cause the backup to take more time.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.7 RMU/BACKUP or RESTORE Bugcheck on Prompt to Mount
a Tape Volume

There is a problem in Oracle Rdb RMU Release 7.1.0.1 and earlier 7.1 versions where, if during an
RMU/BACKUP or RMU/RESTORE a tape is not ready on a drive as expected and either the
RMU−I−READYREAD or RMU−I−READYWRITE prompt is output, an access violation will occur if the
user presses return or inputs any value and presses return. The only way to avoid this is to have a tape ready
on the drive so that this prompt does not need to be output.

The following shows an example of the prompt that caused this bugcheck.

$RMU /BACKUP /REWIND /LABEL=(LABEL1,LABEL2) TESTDB.RDB −
 tapedevice1:TESTDB.BCK, tapedevice2:

RMU−I−READYWRITE, mount volume 3 label LABEL03 on tapedevice1: for writing
Press return when ready:

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.8 RMU/BACKUP Prompt to Initialize Tape Label Created
Incorrect Label

If a tape was mounted by RMU/BACKUP to tape which had an unexpected label and the user was prompted
to either initialize the tape to a default label generated by RMU/BACKUP or to specify a label in the response
to the prompt, an invalid label was generated. Now the default label or the label specified by the user when he

Oracle® Rdb for OpenVMS

6.3.6 RMU/BACKUP to Tape Could Hang and Not Finish 170

responds to the prompt is correctly used to label the tape.

This problem happens even though the user response to the prompt is one of the following valid responses:

INITIALIZE

(the above response allows RMU/BACKUP to generate a valid default label based
 on the /LABEL qualifier)

INITIALIZE LABEL1

INITIALIZE AS LABEL1

The following example shows that even though the user responded to the prompt with a valid label, the
response was ignored.

$RMU /BACKUP /LOG /REWIND /LABEL=(LABEL1,LABEL2) −
 MF_PERSONNEL.RDB TAPE1:MF_PERSONNEL.BCK, TAPE2:

%MOUNT−I−MOUNTED, LABEL1 mounted on _TAPE1: (HJ50AC)
%RMU−I−WRNGLBL, Tape on _TAPE1 was incorrectly labeled. Expected LABEL1 −
Found XXX
%RMU−I−TAPEDISPW, Specify tape disposition for _TAPE1 (QUIT,INITIALIZE,
RETRY,UNLOAD)
RMU> INITIALIZE AS LABEL1
%MOUNT−I−MOUNTED, .`... mounted on _TAPE1: (HJ50AC)

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.9 RMU/RECLAIM Returns ACCVIO and Bugchecks at
RMU_CLEANUP + 00000100

Bug 2232308

The RMU/RECLAIM command would often fail with an ACCVIO fatal error and a bugcheck with an
exception at RMU_CLEANUP + 00000100. This failure occurred during the shutdown and exit phase of the
RMU operation. The following example shows this problem:

$ RMU /RECLAIM /AREA=BAR FOO
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
 virtual address=000000000000014C, PC=00000000003831C0, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DGA0:[ME]RMUBUGCHK.DMP;
%RMU−F−FTL_REP, Fatal error for REPAIR operation at 29−FEB−2002 09:21:12.44

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The RMU/RECLAIM command no longer
fails with an access violation error.

6.3.10 RMU/VERIFY/CONSTRAINT Now Uses Warning for
CONSTFAIL Message

Enhancement Bug 1644732

Oracle® Rdb for OpenVMS

6.3.9 RMU/RECLAIM Returns ACCVIO and Bugchecks at RMU_CLEANUP + 00000100 171

In previous releases of Oracle Rdb, RMU/VERIFY/CONSTRAINT would issue an informational message if a
constraint failed to verify correctly. This severity was often ignored by log file summarizers and so the
severity of the CONSTFAIL message has been changed to a warning as shown in the following example.

$ RMU /VERIFY /CONSTRAINT SQL$DATABASE
%RMU−W−CONSTFAIL, Verification of constraint "T_CHECK1" has failed.
%RMU−W−CONSTFAIL, Verification of constraint "T_CHECK2" has failed.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.11 RMU Prompt to Operator Console Ignored Correct
Responses

If prompts were directed to the operator console for RMU/BACKUP and RMU/RESTORE and not to the
user's terminal, the length of the response entered by the operator was incorrectly returned, causing the
operator to be reprompted even if he entered a valid response.

This problem happened even though the operator's response to the prompt was one of the following valid
responses:

INITIALIZE•
QUIT•
RETRY•
UNLOAD•

The following example shows that even though the operator responded to the prompt with a valid response, it
was ignored and he was reprompted.

$RMU /BACKUP /LOG /REWIND /LABEL=(LABEL1,LABEL2) −
 MF_PERSONNEL.RDB TAPE1:MF_PERSONNEL.BCK, TAPE2:

%MOUNT−I−MOUNTED, LABEL1 mounted on _TAPE1: (HJ50AC)
%RMU−I−WRNGLBL, Tape on _TAPE1 was incorrectly labeled. Expected LABEL1 −
Found XXX
%RMU−I−TAPEDISPW, Specify tape disposition for _TAPE1 (QUIT,INITIALIZE,
RETRY,UNLOAD)
INITIALIZE

%RMU−I−TAPEDISPW, Specify tape disposition for _TAPE1 (QUIT,INITIALIZE,
RETRY,UNLOAD)

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.12 RMU Incremental Backup and Restore Could Cause
Truncated Table Rows to Reappear

Bugs 1926428 and 1987848

There was a problem with RMU/BACKUP/INCREMENTAL and RMU/RESTORE/INCREMENTAL where
rows deleted by a truncate table command in SQL could reappear following an incremental RMU/RESTORE
of uniform storage areas where a truncate table operation had taken place since the last full backup. This

Oracle® Rdb for OpenVMS

6.3.11 RMU Prompt to Operator Console Ignored Correct Responses 172

happened because RMU/BACKUP/INCREMENTAL and RMU/RESTORE/INCREMENTAL did not save
and restore the status of deleted rows from truncated tables as having been deleted due to a truncate table
operation.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.13 Deleted Rows Reappear After RMU/REPAIR

Bug 1926428

If we truncated a table and ran RMU/REPAIR/SPAM twice or RMU/REPAIR/INIT=FREE, the deleted rows
reappeared making the database unreliable.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Note that /SPAM is the default qualifier on the RMU/REPAIR command only if a user does not specify any
of the following qualifiers on the RMU/REPAIR command line:

/AIP•
/ABM•
/INITIALIZE = FREE_PAGES•
/INITIALIZE = SNAPSHOTS•
/INITIALIZE = SNAPSHOTS = CONFIRM•

Previously /SPAM was the default qualifier on all RMU/REPAIR commands.

6.3.14 RMU/EXTRACT Incorrectly Extracts Index STORE Clause
When Using GROUP_TABLE Option

Bug 2270186

In prior releases of Oracle Rdb 7.1, the GROUP_TABLE option did not correctly extract the STORE clause
for indices. The STORE keyword was missing and thus the definition was invalid.

The following example shows this.

 create index STORE_INDEX1
 on STORE_TAB1 (
 A1
 asc)
 type is SORTED
 in STORE1;
 type is SORTED
 using (A1)
 in STORE1
 with limit of (5)
 otherwise in STORE2;

As a workaround, the output from RMU/EXTRACT can be edited to include the missing STORE clause, or
the GROUP_TABLE option can be omitted.

Oracle® Rdb for OpenVMS

6.3.13 Deleted Rows Reappear After RMU/REPAIR 173

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.15 RMU/CONVERT/NOCOMMIT to V71 Lock Conflict Within
Default Storage Area

Bug 2268086

In most cases in RMU/CONVERT, when the RDB$SYSTEM storage area is readied, the default storage area
(if it is different from RDB$SYSTEM) is also readied. This must be done so that system tables contained in
logical areas within the default storage area can be accessed. However, there was a case where the
RDB$SYSTEM storage area was readied but the default storage area was not also readied. This was the case
where RMU/CONVERT/NOCOMMIT was followed by RMU/CONVERT/COMMIT and a default storage
area other than RDB$SYSTEM was defined which contained system tables. Therefore, when
RMU/CONVERT attempted to access system tables in logical areas within the default storage area, and the
default storage area was not readied for access, lock conflicts occurred. This problem will not happen if you
do not specify /NOCOMMIT when you do RMU/CONVERT to V71 or if you do not have a default storage
area other than RDB$SYSTEM defined for the database being converted.

The following example shows that a lock conflict occurred when an RMU/CONVERT/NOCOMMIT of a
database to Rdb V71 was followed by an RMU/CONVERT/COMMIT and a default storage area other than
RDB$SYSTEM was defined for the database.

$RMU /CONVERT /NOCOMMIT TEST
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb X7.1−00
Are you satisfied with your backup of DEVICE:[DIRECTORY]TEST.RDB;1
 and your backup of any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
RMU−S−CVTDBSUC, database DEVICE:[DIRECTORY]TEST.RDB;1
 successfully converted from version V7.0 to V7.1
$RMU /CONVERT /COMMIT TEST
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb X7.1−00
Are you satisfied with your backup of DEVICE:[DIRECTORY]TEST.RDB;1
 and your backup of any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−F−LCKCNFLCT, lock conflict on logical area 23
%RMU−F−FTL_CNV, Fatal error for CONVERT operation at 18−MAR−2002 08:38:14.88

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.16 RMU/COLLECT OPTIMIZER_STATISTICS Fails When
Temporary Tables in Database

Bug 2245491

In previous releases of Oracle Rdb, the RMU/COLLECT OPTIMIZER_STATISTICS command would fail if
there were temporary tables in the database that also had storage maps defined. The storage maps can be used
to disable compression as shown in this example.

SQL> create global temporary table GT (a integer);
SQL> create storage map GT_MAP for GT
cont> disable compression;

Oracle® Rdb for OpenVMS

6.3.15 RMU/CONVERT/NOCOMMIT to V71 Lock Conflict Within Default Storage Area 174

When this database was processed using RMU/COLLECT the following error would occur:

$ RMU /COLLECT OPTIMIZER_STATISTICS TEST_DB/LOG
Start loading tables... at 21−MAR−2002 14:39:50.24
%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual
address=0000000000000068, PC=0000000000345B14, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TEST_DB]RMUBUGCHK.DMP;
%RMU−F−FTL_ANA, Fatal error for ANALYZE operation at 21−MAR−2002 14:39:50.85

A workaround for this problem is to drop just the storage maps for the temporary tables. RMU/COLLECT
normally ignores views and temporary tables. Once the RMU/COLLECT command has been executed, the
storage maps can be re−created for the temporary tables.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. RMU/COLLECT now correctly filters
temporary tables that also have storage maps.

6.3.17 RMU/BACKUP and RESTORE RMU−I−RESUME Message
Gave Incorrect Volume Number

The RMU/BACKUP and RESTORE RMU−I−RESUME message could give an incorrect large volume
number at end of volume when switching from one tape volume to another. For example:

%RMU−I−RESUME, resuming operation on volume 12445679 using _111MUA31

instead of

%RMU−I−RESUME, resuming operation on volume 2 using _111MUA31

The internal volume number used by RMU was correct but there was a problem putting out the volume
number in the message. This has been corrected.

The following example shows that even though the internal volume number used by RMU was correct an
incorrect large volume number was output in the RMU−I−RESUME message at volume change.

$RMU/RESTORE/DIR=DEVICE:[DIRECTORY]/NOCDD/LABEL=TEST/REWIND/LOG/VOLUMES=2 −
 111MUA31:TEST.RBF
%RMU−I−AIJRSTBEG, restoring after−image journal "state" information
%RMU−I−AIJRSTEND, after−image journal "state" restoration complete
%RMU−I−RESTXT_00, Restored root file DEVICE:[DIRECTORY]TEST.RDB;1
%RMU−I−RESTXT_21, Starting full restore of storage area
 DEVICE:[DIRECTORY]DATA.RDA;1 at 27−MAR−2002 07:55:22.71
%RMU−I−RESUME, resuming operation on volume 12445679 using _111MUA31

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.18 RMU/RESTORE Access Violation on Ready Volume
Prompt to Operator Console

If RMU/RESTORE was restoring from one or more tape devices and a tape volume was not ready, an access
violation occurred just before the prompt was going to be output to the operator console from a batch job. This
did not happen if the prompt was output to the user terminal from an interactive RMU/RESTORE command.

Oracle® Rdb for OpenVMS

6.3.17 RMU/BACKUP and RESTORE RMU−I−RESUME Message Gave Incorrect Volume Number175

Therefore, the access violation occurred and the prompt was never output to the operator console.

The following example shows that an access violation occurred instead of the prompt to the operator console
to ready the next volume.

$RMU/RESTORE/DIRECTORY=DEVICE:[DIRECTORY]/NOCDD/LABEL=TEST/REWIND/LOG−
/VOLUMES=2 111MUA31:TEST.RBF
%RMU−I−AIJRSTBEG, restoring after−image journal "state" information
%RMU−I−AIJRSTEND, after−image journal "state" restoration complete
%RMU−I−RESTXT_00, Restored root file DEVICE:[DIRECTORY]TEST.RDB;1
%RMU−I−RESTXT_21, Starting full restore of storage area
 DEVICE:[DIRECTORY]DATA.RDA;1 at 27−MAR−2002 07:55:22.71
%RMU−I−RESUME, resuming operation on volume 2 using _111MUA31
%MOUNT−F−MEDOFL, medium is offline
%SYSTEM−E−ACCVIO, access violation, reason mask=00, virtual
address=0000000000000000, PC=0000000000395568, PS=0000001B
%RMU−I−BUGCHKDMP, generating bugcheck dump file

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.19 RMU/CONVERT to V71 Errors

The following four problems have been discovered when doing RMU/CONVERT to V71.

These problem have been corrected in this release of Oracle Rdb, Release 7.1.0.2. Databases converted with
this and future Rdb 7.1 releases will not exhibit these problems. However, databases which were previously
converted will contain these errors in conversion.

Fortunately these problems do not affect the running of applications on the affected databases. However, it is
possible that the incorrect domain names stored for RDB$PARAMETERS will cause incorrect scripts to be
generated by RMU/EXTRACT and incorrect definitions in a SQL EXPORT file.

Oracle Rdb Engineering has created a tool which can be run on Rdb Release 7.1.0 and Rdb Release 7.1.0.1
databases which will repair these problems. This tool can be run online and is available for download on the
Oracle MetaLink Patch Download area. Please contact Oracle Support for further information.

6.3.19.1 RMU/CONVERT to V71 Changed the Value of Some Existing System
Table Fields

Bug 2245306

RMU/CONVERT to V71 changed the value of some existing system table creator and related date fields
instead of preserving the existing values of these fields.

Now the existing system table creator and date fields which were getting modified or initialized by
RMU/CONVERT (RDB$FIELD_CREATOR in RDB$FIELDS, RDB$RELATION_CREATOR in
RDB$RELATIONS and RDB$MODULE_CREATOR in RDB$MODULES) as well as the related
RDB$CREATED and RDB$LAST_ALTERED timestamps will not be modified. The current value as it was
before the convert will be preserved.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.3.19 RMU/CONVERT to V71 Errors 176

6.3.19.2 RMU/CONVERT to V71 Truncated the RDB$PARAMETER_SOURCE
Value in RDB$PARAMETERS

Bug 2307045

RMU/CONVERT to V71 did not correctly copy the value of the RDB$PARAMETER_SOURCE field from
the existing RDB$PARAMETERS system table to the converted V71 RDB$PARAMETERS system table
since it ignored a change in field alignment between V70 and V71. The first character of the
RDB$PARAMETER_SOURCE field would be missing in V71.

The following example shows that the first character in the RDB$PARAMETER_SOURCE field in the
RDB$PARAMETERS system table was missing in the database converted to V71 from V70.

Here is the RDB$PARAMETER_SOURCE value in the V70 database.

SQL> select RDB$PARAMETER_SOURCE from RDB$PARAMETERS;
 RDB$PARAMETER_SOURCE
 TEST_DOMAIN

Here is the truncated RDB$PARAMETER_SOURCE value in the converted V71 database.

SQL> select RDB$PARAMETER_SOURCE from RDB$PARAMETERS;
 RDB$PARAMETER_SOURCE
 EST_DOMAIN

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.19.3 RMU/CONVERT to V71 Gave Incorrect Values to Some Fields in
RDB$CONSTRAINTS

RMU/CONVERT to V71 did not correctly convert the values of the RDB$CREATED,
RDB$LAST_ALTERED, RDB$CONSTRAINT_CREATOR and RDB$SECURITY_CLASS fields in the
RDB$CONSTRAINTS system table when converting databases to Oracle Rdb V71. The values were shifted
to the right from the correct starting position in the field.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.3.19.4 SHOW SEQUENCE Displays Strange Value for NEXT SEQUENCE
VALUE

Bug 2325235

When SHOW SEQUENCE is used, an unexpected value is displayed for the Next Sequence Value attribute.
This problem only occurs when a database has been converted to Oracle Rdb V7.1 using RMU/CONVERT or
RMU/RESTORE from a prior version. Databases created using CREATE DATABASE or IMPORT
DATABASE do not have this problem.

The following output shows an example of this unexpected value.

SQL> show sequence ID_SEQUENCE
Sequences in database with filename testdb

Oracle® Rdb for OpenVMS

6.3.19.2 RMU/CONVERT to V71 Truncated the RDB$PARAMETER_SOURCE Value in RDB$PARAMETERS177

 ID_SEQUENCE
 Sequence Id: 1
 Initial Value: 215585
 Minimum Value: 1
 Maximum Value: 9223372036854775806
 Next Sequence Value: 45213529323200000
 Increment by: 1
 Cache Size: (Disabled)
 No Order
 No Cycle
 No Randomize

Queries on the sequence and output from RMU/DUMP/HEADER show that the next sequence value is not
such a high value.

SQL> select ID_SEQUENCE.nextval from rdb$database;

 221692
1 row selected

$ RMU/DUMP/HEADER TESTDB
.
.
.

Client sequences:
 − 32 client sequences have been allocated
 Sequence #1. is active
 − Current value = 221693.
 − Flags mask = 00000000
 − Reserved Flags = 00000001
 − 1 client sequence in use

This problem was caused by an error in RMU/CONVERT which didn't fully describe the special
COMPUTED BY column RDB$NEXT_SEQUENCE_VALUE in the table RDB$SEQUENCES. However,
the sequence continues to function correctly. Only SHOW SEQUENCE, EXPORT, and RMU/EXTRACT
will fetch the wrong value from this column.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. RMU/CONVERT now correctly populates
this column. In addition, this release of Oracle Rdb correctly handles this column even for databases
converted to V7.1 and V7.1.0.1 by older versions of RMU/CONVERT.

Oracle® Rdb for OpenVMS

6.3.19.2 RMU/CONVERT to V71 Truncated the RDB$PARAMETER_SOURCE Value in RDB$PARAMETERS178

6.4 Row Cache Errors Fixed

6.4.1 Bugchecks in PIOGB$PURGE_BUFFER After Node Failure
When Row Cache in Use

Bug 2058891

When the Row Cache feature was enabled with global buffers, it was possible for processes to bugcheck with
the following exception after a node failure occurred:

***** Exception at 00E58F9C : PIOGB$PURGE_BUFFER + 0000078C
%COSI−F−BUGCHECK, internal consistency failure

The problem could also occur the first time the database was accessed after an
RMU/CLOSE/ABORT=DELPRC command was issued.

There was a problem in the database recovery mechanisms for the Row Cache feature that could cause global
buffer data structures to become inconsistent.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.4 Row Cache Errors Fixed 179

6.5 RMU Show Statistics Errors Fixed

6.5.1 RMU/SHOW STATISTICS Does Not Honor
CHECKPOINT_SORT

Bug 2057091

There was a problem wherein the CHECKPOINT_SORT in the RMU/SHOW STATISTICS configuration
file was not being honored.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.2 RMU/SHOW STATISTICS CHECKPOINT_ALARM Does Not
Give Out OPCOMs

Bug 1735654

The CHECKPOINT_ALARM variable is no longer used to give out operator notification messages (OPCOM)
for long transactions. The variable LONG_TX_SECONDS is now used for this purpose. RMU/SHOW
STATISTICS gives out OPCOMs to indicate transactions that exceed the interval specified by the
LONG_TX_SECONDS at intervals of 1 minute. The OPCOMs are delivered to the OPCOM classes specified
by the NOTIFY variable in the configuration file.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.3 Possible RMU Bugcheck or Failure to Notify Triggering of
User Defined Events

The notify or invoke associated with a user defined event in RMU/SHOW STATISTICS may not work or an
RMU bugcheck may occur when the user−defined event triggers.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.4 AUTO_RECONNECT Variable Value is not Honored When
Imported From a RMU/SHOW STATISTICS Configuration File

Bug 2113645

The AUTO_RECONNECT parameter value was not honored when imported from a RMU/SHOW
STATISTICS configuration file.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5 RMU Show Statistics Errors Fixed 180

6.5.5 Some RMU/SHOW STATISTICS Counters Can Be Used To
Define Events In Interactive Mode But Not In Batch Mode

Bug 2078940

Some RMU/SHOW STATISTICS counters such as "−prom−deadlocks" can be used to define events in
interactive mode but not in batch mode.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.6 Stream ID Format is Different in Different Places

Bug 2093770

The Stream ID display has been made uniform everywhere it appears.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.7 RMU/SHOW STATISTICS Online Analysis Configuration
Options Do Not Work Properly

Bug 1893049

RMU/SHOW STATISTICS online analysis configuration options did not use the right percentile for
displaying read−write and read−only statistics.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.8 Missing "U" for Utility Jobs in RMU/SHOW STATISTICS
Displays

Bug 2110027

A "U" was not displayed for utility jobs in RMU/SHOW STATISTICS displays.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.9 RMU/SHOW STATISTICS Mixes Up Count Labels

Bug 1937577

In the RMU/SHOW STATISTICS utility, the count labels associated with row cache search are mixed up.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.5.5 Some RMU/SHOW STATISTICS Counters Can Be Used To Define Events In Interactive Mode But Not In Batch Mode181

6.5.10 Errors in Saved RMU/SHOW STATISTICS Configuration
File

Bug 1922670

There are three errors in the saved RMU/SHOW STATISTICS configuration file.

The RUJ_FILE_SIZE parameter is documented to default to 256 but is saved as 25.6 in the
configuration file.

•

If you are monitoring more than one node and save the configuration file, the current node name is
not correctly saved.

•

If you are monitoring more than one node, the CLUSTER_NODES parameter is saved with trailing
garbage characters.

•

These problems have been corrected in Oracle Rdb Release 7.1.0.2.

6.5.11 RMU/SHOW STATISTICS Shows Incorrect Area Sizes

Bug 2151237

The RMU/SHOW STATISTICS display of storage area information shows the initial page count statistic two
times. Further, the count displayed is not accurate.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The accurate page count is now displayed
only once.

6.5.12 RMU/SHOW STATISTICS Multi−Page Report File

Bug 2195802

In Oracle Rdb Release 7.1.0.1, the RMU/SHOW STATISTICS utility was enhanced to write all pages of
multi−page displays to the report file. Unfortunately, this enhancement introduced a regression where some
pages were written to the report file multiple times.

This problem has been corrected in Oracle Rdb Release 7.1.0.2. The RMU/SHOW STATISTICS utility now
writes all pages of multi−page displays to the report file and writes single−page displays only once.

6.5.13 RMU/SHOW STATISTICS Triggers Invoked From User
Defined Events at Times Other Than the Refresh Intervals

Bug 2158913

RMU/SHOW STATISTICS triggers can invoke from a user defined event at times other than refresh
intervals. Moreover, the invoke is triggered more than once for each time the threshold is reached. The same
event works fine when a "NOTIFY" is used instead of an "INVOKE".

This problem has been corrected in Oracle Rdb Release 7.1.0.2. At present (up to releases 7.0.6.3 and 7.1.0.1),
the RMU/SHOW STATISTICS display is updated when the RMU/SHOW STATISTICS keypad is used apart

Oracle® Rdb for OpenVMS

6.5.10 Errors in Saved RMU/SHOW STATISTICS Configuration File 182

from being updated at refresh intervals. As a result of the fix for this problem, RMU/SHOW STATISTICS
display will only be updated at refresh intervals.

6.5.14 RMU/SHOW STATISTICS Row Cache Information May Not
Display the Information of the Cache Selected

Bugs 2220998 and 2150808

RMU/SHOW STATISTICS may not display the information about the correct cache when you select the
"Row Cache Information" option.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.5.15 Inconsistency in the Hot Standby Statistics Screen of
RMU/SHOW STATISTICS

Bug 1943101

An inconsistency is observed on the Hot Standby Statistics screen of RMU/SHOW STATISTICS. On the
standby side, the master AIJ seems smaller than the standby AIJ.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

Oracle® Rdb for OpenVMS

6.5.14 RMU/SHOW STATISTICS Row Cache Information May Not Display the Information of the Cache Selected183

6.6 Hot Standby Errors Fixed

6.6.1 7.1.0.1 Process Hangs During AIJ Switchover

In Oracle Rdb Release 7.1.0.1, it was possible to encounter hang problems when using the Hot Standby
feature if user processes on the master database had multiple database attaches. This problem was introduced
in Release 7.1.0.1.

If a process was attached to multiple databases and the AIJ Log Server (ALS) process was enabled, it was
possible for processes to hang with the stall message "hibernating on AIJ submission". One process usually
was hung with the stall message "waiting for RTUPB list (EX)". The only way to resolve the problem was to
terminate the process that was hanging with "waiting for RTUPB list (EX)".

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.6.2 Could Not Use TCP/IP As Hot Standby Network Transport

If TCP/IP was specified as the network transport for Hot Standby, the AIJ Server (RDMAIJ71) process would
often fail. The logfile for the server process would contain the following error message:

AIJSERVER shutting down: %COSI−F−BUGCHECK, internal consistency failure

No bugcheck dump file would be produced by the server process.

This problem has been corrected in Oracle Rdb Release 7.1.0.2.

6.6 Hot Standby Errors Fixed 184

Chapter 7
Software Errors Fixed in Oracle Rdb Release 7.1.0.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.0.1.

Chapter 7 Software Errors Fixed in Oracle Rdb Release 7.1.0.1 185

7.1 Software Errors Fixed That Apply to All Interfaces

7.1.1 Excessive Disk I/O for DROP TABLE and TRUNCATE
TABLE

Bug 989292

In prior releases of Oracle Rdb, the DROP TABLE and TRUNCATE TABLE statements performed excessive
disk I/O when the table contained LIST OF BYTE VARYING columns. When this data type is present, these
operations must read the table to locate the LIST data. In prior releases, a DELETE operation was also
performed on the table. While this achieved the delete of the LIST data, it also caused constraints, and
possibly triggers, to be executed along with updating indices as each row was deleted.

This problem was corrected in Oracle Rdb7 Release 7.0.4 and was inadvertently left out of the Release Notes.
The DROP TABLE and TRUNCATE TABLE statements no longer cause constraints and triggers to be
executed for the table and indices are no longer updated when processing the LIST OF BYTE VARYING
columns. The result is that I/O required for DROP TABLE and TRUNCATE TABLE is significantly reduced,
especially for tables stored in UNIFORM format storage areas.

7.1.2 LIST Storage Map Not Updated Upon ALTER or DROP
TABLE

Bug 908343

Database administrators can use CREATE STORAGE MAP to establish special storage area mapping for
LIST OF BYTE VARYING columns. The LIST storage map can be used to place all or some of the columns
of the table in specified storage areas. However, it has been reported that this storage map is not updated when
a DROP TABLE or an ALTER TABLE ... DROP COLUMN is executed.

The LIST data is deleted from the database, however, the name of the table or column is left in the storage
map. This leads to confusion later when RMU/EXTRACT is used to process the storage map. Further, if
columns from the table were the only data stored in that partition, Rdb would not delete the logical area when
the table was dropped.

These problems have been corrected in Oracle Rdb Release 7.1. Oracle Rdb now implicitly updates the LIST
storage map when you drop a referenced table or column.

7.1.3 ARBs Exhausted

It was possible for a database to run out of AIJ Request Blocks (ARBs) if many processes were abnormally
terminated. If a process had an ARB allocated at the time it was terminated, the Database Recovery Process
(DBR) would fail to free the ARB allocated to the process. This problem was introduced in Oracle Rdb
Release 7.0.1.2.

Symptoms of this problem include:

7.1 Software Errors Fixed That Apply to All Interfaces 186

Processes looping. RMU/SHOW STATISTICS would show processes stalling waiting for the AIJ
lock or writing the same AIJ block over and over.

•

More AIJ activity due to processes flushing the ARBs more often in attempts to make ARBs
available.

•

The "AIJ Journal Information" screen displayed by RMU/SHOW STATISTICS would show the
available ARB count ("ARB.Avail:") to be few or none.

•

To avoid the problem, avoid terminating processes via the DCL STOP /IDENTIFICATION command. When
the problem occurs, the database must be closed and re−opened on each node where the problem is being seen
to reset the free ARB lists.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.4 CLEAN BUFFER COUNT Parameter Not Obeyed

When the Asynchronous Batch Write feature is being used, Oracle Rdb is supposed to inspect the tail of the
least recently used (LRU) buffer queue to determine if there are any modified buffers at the end of the queue.
The CLEAN BUFFER COUNT parameter specifies how many buffers are to be inspected. If any are found
then those buffers are supposed to be written to disk. However, when unmarking buffers, Oracle Rdb would
unmark buffers at the end of the modified queue instead of the LRU queue. That could cause buffers that were
just modified to be immediately written, even if they were the most recently accessed buffers. This could
cause the buffer to have to be modified again and thus written again.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. Instead of writing the buffers at the tail of the
modified queue, Oracle Rdb now writes the modified buffers at the end of the LRU queue.

7.1.5 DETECTED ASYNCHRONOUS PREFETCH THRESHOLD
Not Obeyed

The detected asynchronous prefetch (DAPF) feature is supposed to initiate asynchronous prefetch (APF)
requests if it detects consecutive pages being fetched from a storage area. The THRESHOLD parameter
declares how many consecutive buffers read in a sequence will trigger an APF request. However, Oracle Rdb
would not actually initiate APF requests until the THRESHOLD count plus half the DEPTH number of
buffers were sequentially read.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. DAPF will now be triggered when
THRESHOLD number of consecutive buffers are read in a sequence.

7.1.6 Page Locks Not Demoted at End of Transaction When
FAST COMMIT Enabled

When using the FAST COMMIT feature, at the end of a transaction, page locks were not being demoted. Page
locks are always demoted at the end of a transaction when the FAST COMMIT feature is not enabled. In
some applications, demoting page locks at the end of a transaction can significantly reduce the incidence of
deadlocks involving page locks.

This situation has been improved in Oracle Rdb Release 7.1.0.1. When the FAST COMMIT feature is
enabled, at the end of a transaction, any buffer that does not contain a modified page will have its page locks
demoted.

Oracle® Rdb for OpenVMS

7.1.4 CLEAN BUFFER COUNT Parameter Not Obeyed 187

7.1.7 Bitmapped Scan Causes Bugcheck on Transaction
Termination

Bug 1978724

A problem with the way bitmapped scan uses indexes in the dynamic optimizer to carry out the scan caused
bugchecks on transaction or session termination.

The call stacks of these bugcheck dumps may include the following:

KOD$ROLLBACK + 00000154
%COSI−F−BUGCHECK, internal consistency failure

or

KOD$PREPARE + 00000288

This problem may occur when the dynamic optimizer determines that a query may be satisfied by three or
more indexes, the first priority index chosen being a non−ranked index (that is, either a normal sorted or a
hashed index). At least two of the remaining indexes have to be sorted ranked indexes for the optimizer to
choose to implement the 'bitmapped scan' optimization.

An example of the portion of the strategy dump from a query that will exhibit this behavior follows:

Leaf#01 FFirst CLIENT_DATA Card=5001 Bitmapped scan
 BgrNdx1 HASHED_1 [(1:1)2] Fan=1
 BgrNdx2 RANKED_3 [1:1] Fan=82
 BgrNdx3 RANKED_2 [1:1] Fan=82
 BgrNdx4 NON_RANKED_1 [1:1] Fan=82

A possible workaround for this problem is to disable bitmapped scans by either:

set flags 'nobitmapped_scan;

or

$ define RDMS$DISABLE_BITMAPPED_SCAN "1"

Disabling bitmapped scan optimization does not stop bitmapped indexes from being used for data retrieval.

Another possible workaround is to either change the first index chosen by the dynamic optimizer to a ranked
index or to disable that index entirely.

This problem does not cause any data corruption in your database.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.8 Problems With Column Outlines

Two problems have been found with the creation of outlines on COMPUTED BY columns.

Oracle® Rdb for OpenVMS

7.1.7 Bitmapped Scan Causes Bugcheck on Transaction Termination 188

Bugcheck dumps may be seen when trying to create outlines on COMPUTED BY columns that use
aggregate functions such as MAX or MIN.
For example, attempting to create an outline on the following COMPUTED BY column would
generate a bugcheck dump.

F1 computed by (select MAX(job_end) from JOB_HISTORY)

There is no known workaround for this problem.

1.

If two or more COMPUTED BY columns exist on the same table, and at least one of these columns
has an outline created on it, it is possible that when the optimizer tries to optimize a query using these
outlines, the query optimization will fail and the query will be aborted with the following error
message:

%RDMS−F−LEVEL_MISMATCH, the table/subquery nesting levels in the query outline
do not match the query

This problem may occur when a query references at least two COMPUTED BY columns from the
same table and one of these has an outline stored for it.
Possible workarounds for this problem are to drop the offending outline or to disable outlines by using
the SET FLAGS 'IGNORE_OUTLINES' statement.

2.

These problems have been corrected in Oracle Rdb Release 7.1.0.1.

7.1.9 Count Scan Optimization Incorrectly Returning Count of 0

Bug 2020109

A problem in the new COUNT SCAN optimization used with ranked indexes may cause incorrect results to
be returned by COUNT. Depending on the distribution of keys within the ranked index nodes and the search
criteria provided to the COUNT statement, the COUNT statement may incorrectly return a value of 0.

This problem will only occur when the optimizer uses count scan optimization on a sorted ranked index where
the search criteria provided in the selection expression for the COUNT statement generates a search key that
does not match an existing key within the index. Depending on key distribution, the scan may, infrequently,
terminate prematurely resulting in an incorrect value of 0 being returned.

A possible workaround for this problem is to disable count scan optimization by using the SET FLAGS
statement or logical name, as in the following example.

SQL> SET FLAGS 'NOCOUNT_SCAN';

or

$ DEFINE RDMS$SET_FLAGS 'NOCOUNT_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

Oracle® Rdb for OpenVMS

7.1.9 Count Scan Optimization Incorrectly Returning Count of 0 189

7.1.10 Disabling AIJ When Row Cache Recovery Required

Bug 1831040

When after−image journaling is manually disabled on a closed database that had Row Caching active and
requires recovery, it is possible to render the database unusable. For example, consider the following sequence
of events:

Database is running with Row Caching enabled1.
AIJ files not backed up and eventually fill2.
User processes deleted or system fails3.
User enters RMU /SET AFTER_JOURNAL /DISABLE command4.

At this point, a warning message is displayed, but the database can not be opened because the DBR process
will fail when attempting to access the after image journal files.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. Attempts to disable journaling will now result
in a fatal error and journaling will not be disabled when Row Cache recovery is required. The following
example demonstrates this condition.

$ RMU /SET AFTER /DISABLE MF_PERSONNEL.RDB
%RMU−W−DBRABORTED, database recovery process terminated abnormally
%RMU−F−MUSTRECDB, database must be closed or recovered
%RMU−F−FTL_SET, Fatal error for SET operation at 11−SEP−2001 22:52:22.37

7.1.11 Bitmapped Scan Problem With Large Indexes

Bug 2030599

A problem in the new bitmapped scan optimization used with ranked indexes may infrequently cause Rdb to
return zero records even when matching records exist.

This problem may be found only when either the data records associated with the keys stored in the ranked
indexes span more than 131070 pages or if the data records span over 3 or more areas. In addition, the
existence of this problem depends strongly on the distribution of those records and the selection criteria used
to match records across the indexes.

Bitmap scan optimization may be chosen by the optimizer when two or more ranked indexes are found that
may satisfy all or part of the selection criteria of a query.

Dumping the query strategy using the 'STRATEGY' debug flag will show those queries that have been
optimized this way. At the end of the LEAF information of the strategy dump will be the phrase 'Bitmapped
scan', as in the following example.

Leaf#01 FFirst CUSTOMER_DATA Card=5065237 Bitmapped scan
 BgrNdx1 ADDR_INDEX [1:1] Fan=82 (index scan#2)
 BgrNdx2 NAME_INDEX [1:1] Fan=82 (index scan#3)
 BgrNdx3 POSTCODE_INDEX [1:1] Fan=82 (index scan#4)

Oracle® Rdb for OpenVMS

7.1.10 Disabling AIJ When Row Cache Recovery Required 190

A possible workaround for this problem is to disable bitmapped scan optimization by using the SET FLAGS
statement or logical name.

For example:

SQL> SET FLAGS 'NOBITMAPPED_SCAN';

or

$ DEFINE RDMS$SET_FLAGS 'NOBITMAPPED_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.12 Query With Range List OR Predicates Returns Wrong
Results

Bug 1329838

The following query with range list OR predicates returns wrong results.

set flags 'strategy,detail';

select t,m,p,b from a
 where (t='S' and (m='N' or p='Q')) or (t='Z' and (m='N' or b='A'))
 order by t,m,p,b;
Tables:
 0 = A
Sort: 0.T(a), 0.M(a), 0.P(a), 0.B(a)
Conjunct: ((0.T = 'S') AND ((0.M = 'N') OR (0.P = 'Q'))) OR ((0.T = 'Z') AND ((
 0.M = 'N') OR (0.B = 'A')))
OR index retrieval ! <== Let's call this "Outer"
 Conjunct: (0.B = 'A') OR (0.M = 'N') OR (0.M = 'N')
 OR index retrieval ! <== let's call this "Inner"
 Get Retrieval by index of relation 0:A
 Index name BTY_X [2:2]
 Keys: (0.B = 'A') AND (0.T = 'Z')
 Conjunct: NOT (0.B = 'A') AND ((0.M = 'N') OR (0.M = 'N')) ! <== incorrect
 Get Retrieval by index of relation 0:A
 Index name MTZ_X [(2:2)2]
 Keys: r0: (0.M = 'N') AND (0.T = 'S')
 r1: (0.M = 'N') AND (0.T = 'Z')
 Conjunct: NOT ((0.B = 'A') OR (0.M = 'N') OR (0.M = 'N')) ! <== incorrect
 Get Retrieval by index of relation 0:A
 Index name PZY_X [1:1]
 Keys: 0.P = 'Q'
 T M P B
 S M Q B
 S M Q NULL
 S N P B
 S N P NULL
 S N Q B
 S N Q NULL
 S N NULL B
 S N NULL NULL
 S NULL Q B
 S NULL Q NULL

Oracle® Rdb for OpenVMS

7.1.12 Query With Range List OR Predicates Returns Wrong Results 191

10 rows selected

where the sequential access gives the correct result:

select t,m,p,b from a
 where (t='S' and (m='N' or p='Q')) or (t='Z' and (m='N' or b='A'))
 order by t,m,p,b optimize for sequential access;
 T M P B
 S M Q A <= missing row
 S M Q B
 S M Q NULL
 S N P A <= missing row
 S N P B
 S N P NULL
 S N Q A <= missing row
 S N Q B
 S N Q NULL
 S N NULL A <= missing row
 S N NULL B
 S N NULL NULL
 S NULL Q A <= missing row
 S NULL Q B
 S NULL Q NULL
15 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main select query contains a where clause with range list OR predicates that involves four
columns, each testing equality with a constant literal value. In this example, we use the column names
B, M, P, and T.

1.

The column T is a common segment between index BTY_X and MTZ_X, where BTY_X is an index
on columns B, T and Y; MTZ_X is an index on columns M, T, and Y. The column P is defined as a
leading segment in PZY_X.

2.

The main OR predicate has the left branch which contains an AND between "T='S'" and another
secondary OR predicate "(m='N' or p='Q')". The right branch contains an AND between "T='Z'" and
another secondary OR predicate "(m='N' or b='A')".

3.

The OR predicates are arranged in such a way that the strategy of the optimizer uses the range list
retrieval "MTZ_X [(2:2)2]" on keys "r0: (0.M = 'N') AND (0.T = 'S')" and "r1: (0.M = 'N') AND (0.T
= 'Z')" in the second leg of the "inner" OR index retrieval under the first leg of the "outer" OR index
retrieval.

4.

The NOT filter, created at the top of the second leg of the "inner" OR index retrieval, does not contain
the equality predicate "0.T = 'Z'" from the first leg.

5.

The NOT filter, created at the top of the second leg of the "outer" OR index retrieval, does not contain
the predicates "(0.T = 'S')" and "(0.T = 'Z')" from the range list predicates of the first leg.

6.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.13 Database Corruption Using Cluster With Galaxy and
Non−Galaxy Nodes

It was possible for page updates to be lost when the following conditions were true:

Oracle® Rdb for OpenVMS

7.1.13 Database Corruption Using Cluster With Galaxy and Non−Galaxy Nodes 192

The database had GALAXY SUPPORT IS ENABLED.•
The database had GLOBAL BUFFERS ENABLED.•
The database was being accessed concurrently by both OpenVMS Galaxy and non−Galaxy nodes.•
The database was often being closed and reopened on one or more of the Galaxy nodes, but never
closed on all of the Galaxy nodes at the same time.

•

In the above situation, it was possible for updates made by a non−Galaxy node to be lost if the non−Galaxy
node closed the database and pages modified by the non−Galaxy node were also present in the global buffer
pool being shared by the Galaxy nodes, and those pages in the Galaxy global buffer pool were not being used
by any of the Galaxy nodes at the time the database was closed by the non−Galaxy node.

Any of the following actions can be taken to workaround the problem:

Disable GALAXY SUPPORT.•
Disable GLOBAL BUFFERS.•
Manually open the database on all Galaxy nodes and keep the database open on all Galaxy nodes until
all users accessing the database from the Galaxy nodes detach from the database.

•

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.14 Performance Problems when
RDM$BIND_SNAP_QUIET_POINT Defined to 0

Bug 884004

When the logical name RDM$BIND_SNAP_QUIET_POINT was defined to 0, it would cause Oracle Rdb to
write out modified buffers and demote all page buffer locks when a READ ONLY transaction was started.
This would defeat the optimizations utilized by the FAST COMMIT feature and would also cause additional
locking and page buffer I/O.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. When the
RDM$BIND_SNAP_QUIET_POINT logical is defined to 0 and a process is holding the quiet point lock
when starting a READ ONLY transaction, the quiet point lock will be retained. Thus buffers will not be
flushed and page locks will not be released when starting a READ ONLY transaction. If a backup process
requests the quiet point lock, and the logical RDM$BIND_SNAP_QUIET_POINT is defined to 0, then any
READ ONLY transactions will immediately write out modified buffers and release the quiet point lock.

7.1.15 Workload Ignored When Loaded with RMU/INSERT
OPTIMIZER_STATISTICS

In previous versions of Oracle Rdb, if workload statistics were loaded into a database using the RMU/INSERT
OPTIMIZER_STATISTICS command, the workload would be ignored by the optimizer.

The use of workload statistics can be observed by setting the ESTIMATES debug flag as shown in the
following example.

SQL> set flags 'estimates';
SQL> select * from t1 where f1=1;
Solutions tried 1
Solutions blocks created 1

Oracle® Rdb for OpenVMS

7.1.14 Performance Problems when RDM$BIND_SNAP_QUIET_POINT Defined to 0 193

Created solutions pruned 0
Cost of the chosen solution 3.0000000E+00
Cardinality of chosen solution 1.0000000E+00
~O: Workload statistics used
 F1 F2
 1 1
1 row selected

After loading workload statistics with the RMU/INSERT command, a query that should use statistics will fail
to show the ~O: Workload statistics used message. This indicates that the statistics are being ignored.

The problem can be identified by examining the data loaded into the RDB$WORKLOAD system table. If the
RDB$CREATED and RDB$LAST_ALTERED columns have the same value, as shown in the following
example, then workload statistics will be ignored.

SQL> select rdb$created,rdb$last_altered from rdb$workload;
 RDB$CREATED RDB$LAST_ALTERED
 19−OCT−2001 00:33:53.27 19−OCT−2001 00:33:53.27
1 row selected

The problem can be corrected by manually updating the RDB$LAST_ALTERED column, as shown in the
following example. New attaches will commence using the workload values.

SQL> update rdb$workload set rdb$last_altered=current_timestamp
cont>where rdb$relation_name='...';

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.16 Descending Sort Not Producing Correct Ordering for
BIGINT and DATE Columns

Bugs 2064232 and 2058531

Oracle Rdb Release 7.1 introduced a new fast sort facility (known as QSORT) which is used when the number
of rows to be sorted are few and the sort keys are simple.

Unfortunately, QSORT did not correctly handle descending sorts for 64 bit values, such as BIGINT, DATE
(both VMS and ANSI formats), TIME, TIMESTAMP and INTERVAL.

A workaround for this problem is to disable QSORT and revert to the normal sort interface by defining the
following logical name to the value zero (0).

$ DEFINE RDMS$BIND_MAX_QSORT_COUNT 0

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.17 Bitmapped Scan Incorrectly Chosen by Optimizer

A problem in the way the Rdb optimizer determines when to use the new bitmapped scan optimization used
with ranked indexes may infrequently cause Rdb to return wrong results.

Oracle® Rdb for OpenVMS

7.1.16 Descending Sort Not Producing Correct Ordering for BIGINT and DATE Columns 194

The optimizer may sometimes incorrectly choose to carry out bitmapped scans that are not appropriate given
the selection criteria of the query in relation to the columns available to be used within the ranked index
columns. See the following example:

SQL> att 'file personnel';
SQL> CREATE TABLE bmtest(A INTEGER,B INTEGER,C INTEGER,D INTEGER,E INTEGER);
SQL> INSERT INTO bmtest VALUES(1,1,10,100,1000);
1 row inserted
SQL> INSERT INTO bmtest VALUES(2,1,10,100,1000);
1 row inserted

SQL> SET FLAGS 'STRATEGY';
SQL> SEL * FROM bmtest WHERE B=1;
Conjunct Get Retrieval sequentially of relation BMTEST
 A B C D E
 1 1 10 100 1000
 2 1 10 100 1000
2 rows selected
SQL> SEL * FROM bmtest WHERE B=1 AND D=100;
Conjunct Get Retrieval sequentially of relation BMTEST
 A B C D E
 1 1 10 100 1000
 2 1 10 100 1000
2 rows selected

SQL> SET FLAGS 'NOSTRATEGY';

SQL> CREATE INDEX bmtest_BCA ON bmtest(B,C,A) TYPE IS SORTED RANKED;
SQL> CREATE INDEX bmtest_DEA ON bmtest(D,E,A) TYPE IS SORTED RANKED;

SQL> SET FLAGS 'STRATEGY';
SQL> SEL * FROM bmtest WHERE B=1;
Leaf#01 FFirst BMTEST Card=0
 BgrNdx1 BMTEST_BCA [1:1] Fan=12
 A B C D E
 1 1 10 100 1000
 2 1 10 100 1000
2 rows selected
SQL> SEL * FROM bmtest WHERE B=1 AND D=100;
Leaf#01 FFirst BMTEST Card=0 Bitmapped scan
 BgrNdx1 BMTEST_BCA [1:1] Fan=12
 BgrNdx2 BMTEST_DEA [1:1] Fan=12
 A B C D E
 1 1 10 100 1000
1 row selected

The last query shows that bitmapped scan has been used but returns incorrect results. Bitmapped scan should
not be invoked unless the query provides equality checks for all the columns in the ranked index.

A possible workaround for this problem is to disable bitmapped scan optimization by using the SET FLAGS
statement or logical name. See the following example:

SQL> SET FLAGS 'NOBITMAPPED_SCAN';

or

$ DEFINE RDMS$SET_FLAGS 'NOBITMAPPED_SCAN'

Oracle® Rdb for OpenVMS

7.1.16 Descending Sort Not Producing Correct Ordering for BIGINT and DATE Columns 195

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.18 Cannot Connect With Remote Access When Using a
Logical

Bug 451582

If a logical is used to specify the path in a remote attach, an Rdb 7.1 client fails to connect to the remote
database. Depending on the way the database name is specified, either a −RDB−E−BAD_DB_FORMAT or
−RDB−F−NONODE is returned. This problem is similar to Bug 451582. The following example shows the
problem behavior and the workarounds.

ALPHA4> DEFINE LL MALIBU::DISK$USERS:[REMOTE_ACCOUNT]
ALPHA4> SQL
SQL> attach 'filename ll:v70db';
%SQL−F−ERRATTDEC, Error attaching to database ll:my_db
−RDB−E−BAD_DB_FORMAT, ll:v70db does not reference a database known to Rdb
−RMS−E−FNF, file not found
SQL> attach 'filename ll:v70db.rdb';
%SQL−F−ERRATTDEC, Error attaching to database ll:my_db.rdb
−RDB−F−SYS_REQUEST, error from system services request
−RDMS−F−BADDBNAME, can't find database root ALPHA4::DISK$USERS:[REMOTE_ACCOUNT]`
−RDMS−F−NONODE, no node name is allowed in the file specification
SQL> attach 'filename malibu::disk$users:[remote_account]my_db.rdb';
SQL> exit;
ALPHA4> DEFINE LL MALIBU::DISK$USERS:[REMOTE_ACCOUNT]MY_DB.RDB
ALPHA4> SQL
SQL> attach 'filename ll';
SQL>

As a workaround, either don't use the logical to specify the path or include the database name in the logical.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.19 Query Joining Derived Tables of Union Legs With Empty
Tables Returns Wrong Results

Bug 1818374

The following query, joining two derived tables containing union legs with empty tables, returns wrong
results of 0 rows, instead of 1 row.

set flags 'strategy,detail';
select c1
 from (select v1.c1 from
 t_02,
 (select * from t_01
 union all
 select * from t_02
) v1
 inner join
 (select * from tt_01
 union all
 select * from tt_02

Oracle® Rdb for OpenVMS

7.1.18 Cannot Connect With Remote Access When Using a Logical 196

) as v2
 on (v1.c1 = v2.c1 and v1.c2 = v2.c2)) as tmp
 where tmp.c1 = 110759;
Tables:
 0 = T_02
 1 = T_01
 2 = T_02
 3 = TT_01
 4 = TT_02
Merge of 1 entries
 Merge block entry 1
 Cross block of 3 entries
 Cross block entry 1
 Index only retrieval of relation 0:T_02
 Index name T_02_NDX [0:0]
 Cross block entry 2
 Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 1.C1 = 110759
 Index only retrieval of relation 1:T_01
 Index name T_01_NDX [1:1]
 Keys: <mapped field> = 110759
 Merge block entry 2
 Leaf#01 FFirst 2:T_02 Card=1
 Bool: 2.C1 = 110759
 BgrNdx1 T_02_NDX [1:1] Fan=17
 Keys: <mapped field> = 110759
 Cross block entry 3
 Conjunct: 1.C1 = 110759
 Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: (<mapped field> = 3.C1) AND (<mapped field> = 3.C2)
 Index only retrieval of relation 3:TT_01
 Index name TT_01_NDX [2:2]
 Keys: (<mapped field> = <mapped field>) AND (<mapped field> =
 <mapped field>)
 Merge block entry 2
 Conjunct: (<mapped field> = 4.C1) AND (<mapped field> = 4.C2)
 Index only retrieval of relation 4:TT_02
 Index name TT_02_NDX [2:2]
 Keys: (<mapped field> = <mapped field>) AND (<mapped field> =
 <mapped field>)
0 rows selected

where the tables are defined as :

! table t_01 is empty
create table t_01 (C1 INTEGER);
create index t_01_ndx on t_01 (C1) ;

! table t_02 has 1 row
create table t_02 (C1 INTEGER, C2 TINYINT);
create index t_02_ndx on t_02 (C1) ;

insert into t_02 values (110759,9);

! table tt_01 is empty

Oracle® Rdb for OpenVMS

7.1.18 Cannot Connect With Remote Access When Using a Logical 197

create table tt_01 (C1 INTEGER, C2 TINYINT);
create index tt_01_ndx on tt_01 (C1, C2);

! table tt_02 has 2 rows
create table tt_02 (C1 INTEGER, C2 TINYINT);
create index tt_02_ndx on tt_02 (C1, C2);

insert into tt_02 values (110759,4);
insert into tt_02 values (110759,9);

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects the column of a derived table with an equality predicate.1.
The main derived table joins a non−empty table (t_02) and an inner join.2.
The inner join involves a derived table of union between an empty table (t_01) and a non−empty table
(t_02), and another derived table of union between an empty table (tt_01) and a non−empty table
(tt_02).

3.

As a workaround, the query works if the empty tables are loaded with some data as in the following example.

insert into t_01 values (110759);

select c1
 from (select v1.c1 from
 t_02,
 (select * from t_01
 union all
 select * from t_02
) v1
 inner join
 (select * from tt_01
 union all
 select * from tt_02
) as v2
 on (v1.c1 = v2.c1 and v1.c2 = v2.c2)) as tmp
 where tmp.c1 = 110759;
 C1
 110759
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.20 Left Outer Join Query With OR Predicate Returns Wrong
Results

Bug 1837522

The following left outer join query with an OR predicate, having an equality predicate of a column and a
constant value on the left side, and an equality predicate of a column and a subquery on the right side, returns
wrong results. It should find 3 rows, but it only finds 2 rows.

set flags 'strategy,detail';
sel job_code, job_start, c1.employee_id, c2.employee_id
 from

Oracle® Rdb for OpenVMS

7.1.20 Left Outer Join Query With OR Predicate Returns Wrong Results 198

 job_history as c1
 left outer join
 employees as c2 on (c1.employee_id = c2.employee_id)
 where
 c1.job_code = 'JNTR' or
 c1.job_start =
 (select max(job_start) from job_history as c3)
 ;
Tables:
 0 = JOB_HISTORY
 1 = EMPLOYEES
 2 = JOB_HISTORY
Cross block of 2 entries
 Cross block entry 1
 Aggregate: 0:MAX (2.JOB_START)
 Get Retrieval by index of relation 2:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Conjunct: 0.JOB_START = <agg0>
 Conjunct: 0.JOB_START = <agg0>
 Match (Left Outer Join)
 Outer loop
 Conjunct: (0.JOB_CODE = 'JNTR') OR (0.JOB_START = <agg0>
 Get Retrieval by index of relation 0:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 C1.JOB_CODE C1.JOB_START C1.EMPLOYEE_ID C2.EMPLOYEE_ID
 PRSD 3−Jan−1983 00225 00225
 DMGR 3−Jan−1983 00241 00241
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query is a left outer join between 2 tables with an ON clause.1.
The WHERE clause contains an OR predicate, with the left side branch being a simple equality
predicate on a column, and the right branch using a sub−query in the equality predicate.

2.

As a workaround, the query works if the left and right side of the OR predicate is swapped. For example:

sel job_code, job_start, c1.employee_id, c2.employee_id
 from
 job_history as c1
 left outer join
 employees as c2
 on (c1.employee_id = c2.employee_id)
 where
 c1.job_start =
 (select max(job_start) from job_history as c3)
 or
 c1.job_code = 'JNTR'
 ;
 C1.JOB_CODE C1.JOB_START C1.EMPLOYEE_ID C2.EMPLOYEE_ID
 JNTR 2−Jan−1977 00223 00223
 PRSD 3−Jan−1983 00225 00225
 DMGR 3−Jan−1983 00241 00241
3 rows selected

Oracle® Rdb for OpenVMS

7.1.20 Left Outer Join Query With OR Predicate Returns Wrong Results 199

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.21 Query Using Match Strategy With DISTINCT Function
Returns Wrong Results

Bugs 1891938 and 1894192

A query using the match strategy with the Distinct Function returns the wrong results, as in the following
example.

set flags 'strategy,detail';
select count(*) from
(select distinct
 t1.ACCOUNT_ID,
 t1.SECURITY_ID
 from T1 t1,
 T2 t2
 where t1.SECURITY_ID = t2.SECURITY_ID
) as t ;
Tables:
 0 = T1
 1 = T2
Merge of 1 entries
 Merge block entry 1
 Reduce: 0.SECURITY_ID, 0.ACCOUNT_ID
 Sort: 0.SECURITY_ID(a), 0.ACCOUNT_ID(a)
 Conjunct: 0.SECURITY_ID = 1.SECURITY_ID
 Match
 Outer loop
 Sort: 1.SECURITY_ID(a)
 Get Retrieval sequentially of relation 1:T2
 Inner loop (zig−zag)
 Index only retrieval of relation 0:T1
 Index name T1_NDX1 [0:0]
 ACCOUNT_ID SECURITY_ID
 A1 DE0005557508
1 row selected

where the tables are defined as :

create table T1 (
 ACCOUNT_ID CHAR (2),
 SECURITY_ID CHAR (12));
create index T1_NDX on T1 (ACCOUNT_ID, SECURITY_ID);

create table T2 (SECURITY_ID CHAR (12));

with the following contents:

select SECURITY_ID from T2;

SECURITY_ID
 DE0005128003
 DE0005557508
2 rows selected

select ACCOUNT_ID,SECURITY_ID from T1;
ACCOUNT_ID SECURITY_ID

Oracle® Rdb for OpenVMS

7.1.21 Query Using Match Strategy With DISTINCT Function Returns Wrong Results 200

 A1 DE0005557508
 PP DE0005128003
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects from a derived table.1.
The derived table is the output of a distinct query from T1 and T2 with a join column predicate.2.
The join column of table T1 is the second segment in index T1_NDX which is ordered by the first
segment ACCOUNT_ID.

3.

The order of the join column of table T2 is ascending and different from that of T2.4.

As a workaround, the query works if the query outline is used to apply cross strategy instead of match, as in
the following example.

select * from
(select
 distinct
 t1.ACCOUNT_ID,
 t1.SECURITY_ID
 from T1 t1,
 T2 t2
 where t1.SECURITY_ID = t2.SECURITY_ID
) as t ;
~S: Outline "QO_325EFDCDDEBFFFA8_00000000" used
Tables:
 0 = T1
 1 = T2
Merge of 1 entries
 Merge block entry 1
 Reduce: 0.ACCOUNT_ID, 0.SECURITY_ID
 Sort: 0.ACCOUNT_ID(a), 0.SECURITY_ID(a)
 Cross block of 2 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 1:T2
 Cross block entry 2
 Conjunct: 0.SECURITY_ID = 1.SECURITY_ID
 Index only retrieval of relation 0:T1
 Index name T1_NDX [0:0]
−− Rdb Generated Outline : 31−JUL−2001 11:23
create outline QO_325EFDCDDEBFFFA8_00000000
id '325EFDCDDEBFFFA85200828890C4E5BA'
mode 0
as (
 query (
−− For loop
 subquery (
 subquery (
 T2 1 access path sequential
 join by cross to −− <=== change from match to cross
 T1 0 access path index T1_NDX
)
)
)
)
compliance optional ;
 ACCOUNT_ID SECURITY_ID
 A1 DE0005557508
 PP DE0005128003

Oracle® Rdb for OpenVMS

7.1.21 Query Using Match Strategy With DISTINCT Function Returns Wrong Results 201

2 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.22 GROUP BY Query With SUM Aggregate Returns Wrong
Results

Bug 1844260

The following GROUP BY query with SUM aggregate returns wrong results (the 1st row of column
ESTADO should be 'A' instead of 'V').

set flags 'strategy,detail';
select estado, sum(total_dep) from bug_view group by estado;
Tables:
 0 = T1
 1 = T2
Aggregate: 0:SUM (CASE (WHEN (0.ID_PRODUCTO = 20) THEN 20 ELSE 15))
Sort: CASE (WHEN (1.FEC_EXPIRACION > 20001231) THEN 'A' WHEN (((0.ID_PRODUCTO =
 15) OR (0.ID_PRODUCTO = 20)) AND (1.FEC_EXPIRACION <= 20001231)) THEN 'V'
 ELSE NULL)(a)
Conjunct: 0.ID_PRODUCTO = 1.ID_PRODUCTO
Match
 Outer loop (zig−zag)
 Index only retrieval of relation 0:T1
 Index name T1_NDX [0:0]
 Inner loop (zig−zag)
 Get Retrieval by index of relation 1:T2
 Index name T2_NDX [0:0]
 ESTADO
 V 15 <=== ESTADO should be 'A'
 V 15
2 rows selected

where the view is defined as :

create view bug_view (id_producto, total_dep, estado) as
select
 a.id_producto,
 case
 when a.id_producto = 20 then 20
 else 15
 end as total_dep,
 case
 when b.fec_expiracion > 20001231 then 'A'
 when (a.id_producto = 15
 OR a.id_producto = 20
) and
 b.fec_expiracion <= 20001231
 then 'V'
 end as estado
 from opas_saldos_err a, ope_pasiva_err b
 where
 a.id_producto = b.id_producto ;

with the following content in the tables:

select * From t1;

Oracle® Rdb for OpenVMS

7.1.22 GROUP BY Query With SUM Aggregate Returns Wrong Results 202

 ID_PRODUCTO
 8
1 row selected

select * From t2;
 ID_PRODUCTO FEC_EXPIRACION
 8 20000801
 8 20010628
2 rows selected

As a workaround, the query works if the predicate "OR a.id_producto = 20" is commented out from the view,
as in the following example.

create view bug_view_good (id_producto, total_dep, estado) as
select
 a.id_producto,
 case
 when a.id_producto = 20 then 20
 else 15
 end as total_dep,
 case
 when b.fec_expiracion > 20001231 then 'A'
 when (a.id_producto = 15
! OR a.id_producto = 20
) and
 b.fec_expiracion <= 20001231
 then 'V'
 end as estado
 from t1 a, t2 b
 where
 a.id_producto = b.id_producto ;

select estado, sum(total_dep) from bug_view_good group by estado;
Tables:
 0 = T1
 1 = T2
Aggregate: 0:SUM (CASE (WHEN (0.ID_PRODUCTO = 20) THEN 20 ELSE 15))
Sort: CASE (WHEN (1.FEC_EXPIRACION > 20001231) THEN 'A' WHEN ((0.ID_PRODUCTO =
 15) AND (1.FEC_EXPIRACION <= 20001231)) THEN 'V' ELSE NULL)(a)
Conjunct: 0.ID_PRODUCTO = 1.ID_PRODUCTO
Match
 Outer loop (zig−zag)
 Index only retrieval of relation 0:T1
 Index name T1_NDX [0:0]
 Inner loop (zig−zag)
 Get Retrieval by index of relation 1:T2
 Index name T2_NDX [0:0]
 ESTADO
 A 15
 V 15
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query contains a GROUP BY clause and SUM aggregate function.1.
The SUM aggregate function is defined in the view as a CASE expression.2.
The column in the GROUP BY clause is defined in the view as a CASE expression which contains
the same predicate from the CASE expression of the SUM aggregate.

3.

Oracle® Rdb for OpenVMS

7.1.22 GROUP BY Query With SUM Aggregate Returns Wrong Results 203

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.23 ROLLBACK Hangs Under DECdtm When Called From an
ACMS CANCEL Procedure

Bug 1905068

Under certain situations, the CANCEL procedure in an ACMS application would cause the ACMS server
process to hang in the RDB dispatch layer. This problem can only occur under the following circumstances:

The ACMS application is using 2 phase commit under DECdtm either explicitly (i.e. with a
SYS$START_TRAN call) or implicitly (by attaching to multiple Rdb databases).

1.

The CANCEL procedure contains a SYS$ABORT_TRAN call or ROLLBACK statement.2.
The ACMS server process has an outstanding pending request which is blocked (e.g. waiting for rows
locked by another user).

3.

If all three of these conditions occurred, the ACMS server process would hang in the CANCEL procedure
even after the condition that caused the original blocking cleared.

The only workaround is to stop the ACMS server process.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.1.24 COMPUTED BY Columns Now Automatically Reserve
Referenced Tables

Bug 1253235

In previous versions of Rdb, it was possible that an application could fail if a reference to a COMPUTED BY
or view column required a table not specified in the RESERVING clause of the SET or DECLARE
TRANSACTION statement.

The application developer may not know that a column requires these extra tables as part of the transaction, or
the definition of the view or COMPUTED BY column may be changed to reference different tables after the
application is in production.

The following example shows an example where a COMPUTED BY column (PRICE) requires access to a
table (CASE_TABLE) that was not referenced by the RESERVING clause.

SQL> set transaction read only
cont> reserving REPORT_VIEW for shared read;
SQL> select * from REPORT_VIEW order by LINE_NUM;
%RDB−E−UNRES_REL, relation CASE_TABLE in specified request is not a
relation reserved in specified transaction
SQL> rollback;
SQL> set transaction read only
cont> reserving REPORT_VIEW, CASE_TABLE for shared read;
SQL> select * from REPORT_VIEW order by LINE_NUM;
 CASE_NUM LINE_NUM PRICE
 1 1 7270.00
 1 2 14540.00

Oracle® Rdb for OpenVMS

7.1.23 ROLLBACK Hangs Under DECdtm When Called From an ACMS CANCEL Procedure 204

2 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1. Rdb now automatically reserves tables
referenced by COMPUTED BY columns for SHARED READ.

Oracle® Rdb for OpenVMS

7.1.23 ROLLBACK Hangs Under DECdtm When Called From an ACMS CANCEL Procedure 205

7.2 SQL Errors Fixed

7.2.1 Command Line Recall Expanded to 255 Lines

In prior releases of Oracle Rdb, the command line recall was limited to the last 20 lines. This limit has been
lifted to 255 (the maximum supported by OpenVMS) for this release of Rdb.

If more recall is required then SQL provides the EDIT command to edit whole statements. This interface
currently saves the last 20 commands for edit but the SET EDIT KEEP statement can be used to expand this
number.

7.2.2 New Minimum Value for the INTERVAL Leading Precision

In prior releases of Oracle Rdb, the minimum value for the interval leading precision was restricted to two
digits. This restriction has been removed: an interval leading precision of 1 is now supported.

The following example shows the support for the lower precision value.

SQL> create table TIME_CLOCK
cont> (employee_id char(5),
cont> clock_on timestamp (2),
cont> clock_off timestamp (2),
cont> shift_duration
cont> computed by (clock_off − clock_on) hour (1) to minute);
SQL>
SQL> show table (column) TIME_CLOCK
Information for table TIME_CLOCK

Columns for table TIME_CLOCK:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
EMPLOYEE_ID CHAR(5)
CLOCK_ON TIMESTAMP(2)
CLOCK_OFF TIMESTAMP(2)
SHIFT_DURATION INTERVAL
 HOUR (1) TO MINUTE
 Computed: by (clock_off − clock_on) hour (1) to minute

As in previous releases, if no precision is provided then a default of 2 digits will be used.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.2.3 Incorrect Processing of CASE Expression

Bug 850442

In prior releases of Oracle Rdb, the SQL interface incorrectly processed CASE expressions which included
statistical functions (i.e. COUNT, MAX, MIN, AVG, STDDEV, VARIANCE and SUM).

The following example, which imbeds statistical functions in a CASE expression, caused Rdb to bugcheck:

7.2 SQL Errors Fixed 206

select
 case
 when count(employee_id) >= 1
 then '1'
 when count(employee_id) = 0
 then '2'
 else '3'
 end
 from employees;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TEST]RDSBUGCHK.DMP;
%SQL−I−BUGCHKDMP, generating bugcheck dump file USER2:[TEST]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=0000000000000098, PC=000000000038B948, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

This improved handling of statistical functions also corrects some query strategies. The following example
implements a simple ABS functionality. Due to the erroneous handling of the statistical function, an extra
subselect was present as shown in the optimizer STRATEGY display.

SQL> set flags 'strategy';
SQL> select
cont> case
cont> when AVG (salary_amount) < 0 then − AVG (salary_amount)
cont> else AVG (salary_amount)
cont> end
cont> from SALARY_HISTORY;
Cross block of 2 entries
 Cross block entry 1
 Aggregate Get Retrieval sequentially of relation SALARY_HISTORY
 Cross block entry 2
 Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

 2.652896707818930E+004
1 row selected

The corrected SQL query now only requires a single table access.

Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

 2.652896707818930E+004
1 row selected

Applications that encounter this type of unexpected optimizer strategy will need to be recompiled, and stored
procedures and functions will need to be recreated.

7.2.4 ALTER TABLE Not Dropping NOT NULL Constraints When
NULL Clause Used

In Oracle Rdb Release 7.1, new syntax was introduced to indicate that a column should allow NULL values.
For instance,

create table MY_TABLE (my_column integer NULL);

This syntax is accepted for compatibility with Oracle RDBMS and on CREATE and ALTER TABLE

Oracle® Rdb for OpenVMS

7.2.4 ALTER TABLE Not Dropping NOT NULL Constraints When NULL Clause Used 207

prevents the use of the NOT NULL constraint syntax.

When used on ALTER TABLE ... ALTER COLUMN, this clause should also drop any (and all) NOT NULL
constraints defined for the column. This was not performed by Rdb Release 7.1.

The following example shows that the NOT NULL constraint is now dropped by ALTER TABLE.

SQL> create table MY_TABLE (a integer not null);
SQL>
SQL> show table (constraint) MY_TABLE
Information for table MY_TABLE

Table constraints for MY_TABLE:
MY_TABLE_A_NOT_NULL
 Not Null constraint
 Column constraint for MY_TABLE.A
 Evaluated on UPDATE, NOT DEFERRABLE
 Source:
 MY_TABLE.A NOT null

Constraints referencing table MY_TABLE:
No constraints found

SQL>
SQL> alter table MY_TABLE
cont> alter column A NULL;
SQL>
SQL> show table (constraint) MY_TABLE
Information for table MY_TABLE

Table constraints for MY_TABLE:
No constraints found

Constraints referencing table MY_TABLE:
No constraints found

SQL>

This problem has been corrected in Oracle Rdb Release 7.1.0.1. This clause now implicitly drops NOT NULL
constraints for the column.

NOTE: Other constraints that prevent NULL values, such as CHECK and PRIMARY KEY, are not affected
by this statement. The NULL clause is not a constraint and so is not active beyond the CREATE and ALTER
TABLE statements.

7.2.5 Some Constraint Definitions Not Supported for
AUTOMATIC Columns

In Oracle Rdb Release 7.1, attempts to define UNIQUE, PRIMARY KEY or FOREIGN KEY constraints for
AUTOMATIC columns would result in an error.

In the following example, the programmer desired an automatically generated unique number as a PRIMARY
KEY:

SQL> create sequence s1;

Oracle® Rdb for OpenVMS

7.2.5 Some Constraint Definitions Not Supported for AUTOMATIC Columns 208

SQL> create table t(a automatic as s1.nextval primary key);
%SQL−F−PKCONSNOTCB, Computed column may not be a primary key

Only NOT NULL and CHECK constraints were allowed for AUTOMATIC columns.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. All types of constraints are now permitted for
AUTOMATIC columns.

7.2.6 %RDB−E−NO_DIST_BATCH_U Error When Executing SET
TRANSACTION

Bug 1921672

If a SET TRANSACTION statement was executed to start a distributed transaction (2 phase commit) and
which specified certain table partitions, an error was inappropriately returned. Specifically, if partition 14 was
named, Rdb would return a %RDB−E−NO_DIST_BATCH_U error and not start the transaction.

For example, suppose an interactive SQL session has two databases attached (this implicitly starts a DECdtm
distributed transaction), the following SQL would fail as shown.

SQL>SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL READ COMMITTED −
RESERVING DB2.MY_TABLE PARTITION(14) FOR EXCLUSIVE WRITE;
%RDB−E−NO_DIST_BATCH_U, no distributed transaction is allowed with the
recovery mechanism disabled

This query will now execute normally and start a distributed transaction.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.2.7 Select With Identical "not in" Clauses

A SQL query which contained two identical "not in" clauses would cause an application to crash, terminate or
bugcheck.

This problem started in Oracle Rdb V7.0.

An example of this type of query follows.

select count(*) from JOBS
 where JOB_CODE not in ('A', 'B')
 and JOB_CODE not in ('A', 'B');

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.2.8 Keyword Matching Now Reported by Interactive SQL

In prior versions of Oracle Rdb, the keyword abbreviation and matching support in interactive SQL would
discard extraneous characters from a token if an expected keyword matched the leading prefix. This was

Oracle® Rdb for OpenVMS

7.2.6 %RDB−E−NO_DIST_BATCH_U Error When Executing SET TRANSACTION 209

confusing in some cases. Interactive SQL now generates an informational message to clearly state the
substitution.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

This example shows the informational message generated when extra characters are trimmed from the
keyword.

SQL> create trigger mytrigger
cont> after updatete on mytable2
%SQL−I−SPELLCORR, identifier UPDATETE replaced with UPDATE
cont> (insert into mytable values (mytable2.a, 'Any', 'Value'))
cont> for each row;

7.2.9 CREATE MODULE Bugchecks When a Subselect is Used
as a Parameter DEFAULT

In a CREATE MODULE definition, if a subselect was used as a parameter DEFAULT, the create module
bugchecked with the following error message:

%SQL−F−BUGCHK, There has been a fatal error. Please contact your Oracle support
representative. SQL$BLRXPR − 15

An example follows:

SQL> create module DEF_MOD
cont>
cont> procedure DEF1
cont> (in :a integer
cont> default (select count(*) from rdb$database));
cont> trace :a;
cont>
cont> end module;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file
device:[directory]SQLBUGCHK.DMP;
%SQL−F−BUGCHK, There has been a fatal error. Please contact your Oracle support
representative. SQL$BLRXPR − 15

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The CREATE MODULE definition no longer
bugchecks.

7.2.10 Obsolete Metadata Errors When Using Rdb SQL V7.1 to
Access Oracle Rdb V7.0 Databases

Bug 1994383

When using Oracle Rdb SQL V7.1 to access an Oracle Rdb V7.0 database, obsolete metadata errors were
generated when trying to CREATE a TABLE, a VIEW, and/or a DOMAIN.

Specifically, when CREATing a TABLE or a VIEW, the following error message would be generated:

Oracle® Rdb for OpenVMS

7.2.9 CREATE MODULE Bugchecks When a Subselect is Used as a Parameter DEFAULT 210

CREATE TABLE T (id int);
%RDB−F−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−TABNOTDEF, relation RDB$SEQUENCES is not defined in database
CREATE VIEW V as select * from employees;
%RDB−F−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−TABNOTDEF, relation RDB$SEQUENCES is not defined in database

When trying to CREATE a domain, the following error message would be generated:

create domain dom_test int;
%RDB−F−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−TABNOTDEF, relation RDB$TYPES is not defined in database

These problems have been corrected. SEQUENCES and TYPES are Release 7.1 features and the Rdb SQL
code base has been corrected to insure that queries utilizing these features are only performed against V7.1
databases. Thus, error messages are no longer generated.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.2.11 SQL$PRE and SQL$MOD Performance Improvements

Bug 2032243

The performance of the SQL precompiler and the SQL module language compiler has been improved in
Oracle Rdb Release 7.1.0.1. This improvement is typically seen as a dramatic reduction in CPU consumption
and elapsed time when using the compilers.

Note as well that the size of the SQL$PRE71.EXE and SQL$MOD71.EXE images has been reduced by
nearly 50%.

7.2.12 Incompatible Character Sets Not Detected by SQL
Interface

In prior versions of Oracle Rdb, the SQL UNION operator would accept incompatible character sets for
merging. This incompatibility was only detected at runtime by the Rdb server.

SQL> select _dec_mcs'aa' from rdb$database
cont> union
cont> select _kanji'bb' from rdb$database;
%RDB−E−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−E−CSETBADASSIGN, incompatible character sets prohibit the requested
assignment

With this release of Rdb, the SQL interface now detects this error and reports an error indicating the
incompatibilities.

SQL> select _dec_mcs'aa' from rdb$database
cont> union
cont> select _kanji'bb' from rdb$database;
%SQL−F−INCCSCON, Incompatible character set concatenation between DEC_MCS and
KANJI

Oracle® Rdb for OpenVMS

7.2.11 SQL$PRE and SQL$MOD Performance Improvements 211

In addition, SQL now derives a new target character set for the UNION select values by using a character set
that is compatible with both. For instance, DEC_KANJI includes the full ASCII character set so it will be
chosen as the result character set when ASCII and DEC_KANJI are merged in a UNION operator.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.2.13 SQLMOD Fails to Set Default Character Set Correctly

A problem within SQLMOD prevented the correct default character set from being set for the module
compilation if a character set other than DEC_MCS was specified as the DEFAULT CHARACTER SET in
the module header.

A check of the listing file will show that the default character set has not been set correctly and, due to this
problem, SQL−F−INCCSASS errors may be raised during the module compilation.

For example, the following module tries to set the default character set to SHIFT_JIS, however, the
compilation of the module results in compilation errors.

$type A.SQLMOD
.
.
.
DECLARE MODULE
 DIALECT SQL92
 DEFAULT CHARACTER SET SHIFT_JIS
 NATIONAL CHARACTER SET SHIFT_JIS
 IDENTIFIER CHARACTER SET SHIFT_JIS
 LITERAL CHARACTER SET SHIFT_JIS
 DISPLAY CHARACTER SET SHIFT_JIS
 AUTHORIZATION RDB$DBHANDLE
 CHARACTER LENGTH CHARACTERS
.
.
.
 INSERT INTO SHIFTJIS_TABLE (SHIFTJIS_COL1)
 VALUES
 (:LAST_NAME);
.
.
.
$ SQLMOD/LIST=A.LIS A.SQLMOD
.
.
.
 (SHIFTJIS_COL1)
 1
%SQL−F−INCCSASS, (1) Incompatible character set assignment between
SHIFTJIS_COL1 and :LAST_NAME

$ type A.LIS

.

.

.
Command Line Summary:

 SJIS_MOD2_M.SQLMOD /LIST

Oracle® Rdb for OpenVMS

7.2.13 SQLMOD Fails to Set Default Character Set Correctly 212

 /G_FLOAT
 /WARN=(WARNING, DEPRECATED)
 /NOFLAG_NONSTANDARD
 /CONSTRAINT_DEFAULT=DEFERRED
 /NOCONNECT
 /INIT_HANDLES
 /NORESTRICT_INVOKER
 /CHECK_RW
 /ANSI_VIEWS
 /ANSI_DATE
 /ANSI_QUOTING
 /ANSI_PARAMETERS
 /QUERY_ESTIMATES
 Default Character Set: DEC_MCS
 National Character Set: SHIFT_JIS
 Identifiers Character Set: SHIFT_JIS
 Literals Character Set: SHIFT_JIS
 Character Length in Characters
.
.
.

Note that the Default Character Set as shown in the listing file has not been set correctly.

A workaround for this problem is to use NAMES ARE in the module header to set the desired character set
prior to setting the Default Character Set.

.

.

.
DECLARE MODULE
 DIALECT SQL92
 NAMES ARE SHIFT_JIS
 DEFAULT CHARACTER SET SHIFT_JIS
 NATIONAL CHARACTER SET SHIFT_JIS
 IDENTIFIER CHARACTER SET SHIFT_JIS
 LITERAL CHARACTER SET SHIFT_JIS
 DISPLAY CHARACTER SET SHIFT_JIS
 AUTHORIZATION RDB$DBHANDLE
 CHARACTER LENGTH CHARACTERS
.
.
.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

Oracle® Rdb for OpenVMS

7.2.13 SQLMOD Fails to Set Default Character Set Correctly 213

7.3 Oracle RMU Errors Fixed

7.3.1 RMU Extract Not Formatting View Column Expressions
Correctly

Bug 1832240

In prior releases of Oracle Rdb, the RMU Extract command did not correctly format VIEW definitions that
contained computed expressions in the SELECT clause, such as that shown below.

create view V1 (F3) as
 select sum (F3 /
 case (select cast (F1 as integer) from T1
 where F2 = 'STR_VALUE')
 when 0 then 1
 when 1 then 10
 when 2 then 100
 when 3 then 1000
 when 4 then 10000
 when 5 then 100000
 else 0
 end)
 from T2;

This example was extracted below. Note the incorrect formatting of the expression and the missing separating
white space. This made the generated definition illegal.

create view "V1"
 (F3) as
 select

 sum((C2.F3 / case (select CAST(C3.F1 AS INTEGER) from T1 C3where (C3.F2 =
 'STR_VALUE')) when 0 then 1 when 1 then 10 when 2 then 100 when 3 then 1000
 when 4 then 10000 when 5 then 100000 else 0end)) from T2 C2;

The only workaround for this problem is to manually edit the definition after extracting with RMU Extract or
to revert to the original view source.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.3.2 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records
Clarification

The RMU /UNLOAD /AFTER_JOURNAL Utility uses additional CPU and memory resources while
processing and unloading fragmented records from the after−image journal file. As record fragments are
found within a transaction, they are buffered in memory on a "fragment" queue. After all non−fragmented
records from the transaction have been output, the fragmented records are reconstructed and output.

Because the fragments are buffered in memory, additional process page file quota may be required when
unloading transactions that have a large number of record fragments. Also additional process working set
quota may be required in order to limit process page faulting.

7.3 Oracle RMU Errors Fixed 214

7.3.3 RMU/DUMP/BACKUP Did Not Check the VMS BYPASS
Privilege

Bug 1966820

The RMU/DUMP/BACKUP command for Oracle Rdb RMU did not check if the user process was granted the
VMS BYPASS privilege if the user was not granted the necessary RMU access privileges to the database
backup file created by the RMU/BACKUP command. Therefore, the RMU/DUMP/BACKUP command did
not execute even though the BYPASS privilege should have allowed the user to execute the command.

The following example shows that even though the BYPASS privilege should have allowed the user to
override the lack of RMU privileges to access the backup file, the user was denied access by the
RMU/DUMP/BACKUP command.

$RMU /DUMP /BACKUP_FILE PERSONNEL
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−F−NOPRIVERR, no privileges for attempted operation
%RMU−F−FTL_DUMP, Fatal error for DUMP operation at 30−AUG−2001 16:42:17.96

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.3.4 RMU/BACKUP Invalid Volume 1 Tape Label When Used
With HP SLS

Bug 1969648

The RMU/BACKUP command for Oracle Rdb RMU, when used with HP SLS, did not detect the case where
SLS did not provide a new VOL1 label to replace the VOL1 label that Rdb RMU/BACKUP was about to
write to the first tape volume. RMU/BACKUP therefore wrote an 80 character label buffer to the tape that
contained invalid characters. This caused an RMU−F−LABELERR when the tape was restored using
RMU/RESTORE.

This problem only happens when RMU/BACKUP is run with HP SLS and when HP SLS does not modify the
80 character VOL1 label that RMU/BACKUP writes to the first tape volume.

The following example shows that although the RMU/BACKUP with SLS did not show an error, a VMS
DUMP command of the BACKUP tape shows an invalid label on the first backup tape volume. Therefore,
RMU/RESTORE returns an RMU−F−LABELERR.

Here is an example of a valid RMU/BACKUP tape label on the first tape volume created after this problem
was fixed (note that this is just an example and correct labels may vary).

$ DUMP TAPEDEVICE:

Dump of device tapedevice: on 29−AUG−2001 11:44:32.94

Block number 1 (00000001), 80 (0050) bytes

20202020 20202020 20202020 20202020 20202020 20203035 30494241 314C4F56

VOL1ABI050 000000

Oracle® Rdb for OpenVMS

7.3.3 RMU/DUMP/BACKUP Did Not Check the VMS BYPASS Privilege 215

20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020

 000020

33202020 20202020 20202020 202020203................ 000040

Here is an example of an invalid RMU/BACKUP tape label on the first tape volume that has been created by
this problem (note that this is just an example and incorrect labels may vary).

$ DUMP TAPEDEVICE:

Dump of device tapedevice: on 29−AUG−2001 ...

Block number 1 (00000001), 80 (0050) bytes

00000000 00001F00 00000000 00183390 FFFFFFFF FFFFFFFE 00000000 000119D8

Ø...............3.............. 000000

00000000 00000000 00000000 007EBFC0 00000000 00183390 00000000 00010DC0

À........3......À¿~............. 000020

00000000 00000000 00000000 00000D05

................................ 000040

Here is an example of the RMU−F−LABELERR returned by RMU/RESTORE.

%RMU−F−LABELERR, error in tape label processing on
tapedevice:[000000]SAMPLE_DB.RBF;
−RMU−F−NOTANSI, tape is not valid ANSI format
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation ...

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.3.5 RMU/ANALYZE/CARDINALITY Fails on Databases With
Local Temporary Tables

Bug 2019322

RMU/Analyze/Cardinality, when attempting to process LOCAL temporary tables, generated an error and
failed to execute.

$ RMU /ANALYZE /CARDINALITY SQL$DATABASE
%RDMS−E−BAD_CODE, corruption in the query string
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU−F−FTL_ANA, Fatal error for ANALYZE operation at 27−SEP−2001 13:34:25.79

RMU has now been corrected to ignore temporary tables as well as views.

The workaround for this problem is to use the RMU/SHOW OPTIMIZER/STATISTIC=CARD command or
the RMU/COLLECT OPTIMIZER_STATISTICS command if RMU/ANALYZE/CARDINALITY/UPDATE

Oracle® Rdb for OpenVMS

7.3.5 RMU/ANALYZE/CARDINALITY Fails on Databases With Local Temporary Tables 216

was tried.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

7.3.6 File Name Not Displayed By RMU /RESTORE for Extend
Failure

Bug 1822217

When an RMU /RESTORE operation is unable to extend a storage area, it is possible for the error message
displayed to not include the name of the file. This may make it difficult to determine which device has
inadequate free space. In the following example note that the name of the file is not displayed.

$ RMU /RESTORE ...
%RMU−F−FILACCERR, error extending file
−SYSTEM−W−DEVICEFULL, device full; allocation failure
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 17−JUN−2001 03:08:55

This problem has been corrected in Oracle Rdb Release 7.1.0.1. RMU /RESTORE now displays the file name,
where possible, during a failed file extend operation.

7.3.7 RMU/SHOW STATISTICS Allowed Suspend of Disabled
ABS

Previously, the RMU /SHOW STATISTICS Utility allowed the user to suspend AIJ Backup Server (ABS)
operations on a node even when the ABS was disabled. This could lead to confusing errors during later
manual AIJ backup operations.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /SHOW STATISTICS Utility now
does not allow the ABS to be suspended when it is not enabled.

7.3.8 RMU/COPY/BLOCKS_PER_PAGE Can Corrupt Copied
Database Uniform Areas

Bug 2028181

For the RMU/COPY command, if the "/blocks_per_page" qualifier was not specified for a particular storage
area but was for all database storage areas, database corruption of uniform storage areas occurred to the
copied database. As documented in the Oracle Rdb RMU Reference Manual for the RMU/COPY command,
BLOCKS PER PAGE can only be changed for MIXED storage areas, not UNIFORM storage areas. But when
the "/blocks_per_page" qualifier was used for all storage areas, RMU incorrectly bypassed the check for
UNIFORM storage areas and attempted to change the BLOCKS PER PAGE setting for UNIFORM as well as
MIXED storage areas. This caused the database corruption of the moved copy of the database. Now, the
number of BLOCKS PER PAGE will be changed only for MIXED storage areas and a warning message will
be output for each UNIFORM storage area that BLOCKS PER PAGE cannot be changed for that area since it
is a UNIFORM database storage area.

The following example shows that since /BLOCKS_PER_PAGE=3 was specified for all storage areas in the
MF_PERSONNEL database, it caused the database corruption problem for the uniform storage areas in the

Oracle® Rdb for OpenVMS

7.3.6 File Name Not Displayed By RMU /RESTORE for Extend Failure 217

copied database.

$ RMU /COPY /DIRECTORY=TMPDIR /ROOT=TMPDIR:MFP1 /BLOCKS_PER_PAGE=3 MF_PERSONNEL
%RMU−W−BADPTLARE, invalid larea for uniform data page 5 in storage area 1
%RMU−W−BADPTLAR2, SPAM larea_dbid: 16385, page larea_dbid: 1
%RMU−W−BADPTLARE, invalid larea for uniform data page 149 in storage area 1

$ RMU /VERIFY /ALL TMPDIR:MFP1
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RDB−W−NO_RECORD, access by dbkey failed because dbkey is no longer associated
 with a record
−RDMS−F−NODBK, 61:1179:0 does not point to a data record
%RMU−E−ERRRDBREL, error accessing RDB$RELATIONS relation

The following example shows that the problem is now fixed.

$ RMU /COPY /DIRECTORY=TMPDIR /ROOT=TMPDIR:MFP1 /BLOCKS_PER_PAGE=3 MF_PERSONNEL
%RMU−W−UNIFORMBLOCKS, BLOCKS PER PAGE cannot be changed for uniform storage
 area RDB$SYSTEM
%RMU−W−UNIFORMBLOCKS, BLOCKS PER PAGE cannot be changed for uniform storage
area MF_PERS_SEGSTR

$ RMU /VERIFY /ALL TMPDIR:MFP1

To avoid this problem, specify /BLOCKS_PER_PAGE for each individual storage area in the RMU/COPY
command, not as a default for all storage areas.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. A warning message is displayed and the
uniform storage area page size is not changed.

7.3.9 DROPped Storage Area and RMU /VERIFY in Cluster

Bug 1421362

Previously, when a database was opened in a cluster environment, it was possible for the RMU /VERIFY
command to be unable to open storage area files when storage areas were moved or dropped on another node
in the cluster.

For example, consider the following sequence of events on a two node cluster (consisting of NODE1 and
NODE2):

Node1$: RMU /OPEN MFP

Node2$: RMU /OPEN MFP

Node1$: SQL$ ALTER DATABASE FILENAME MFP DROP STORAGE AREA U1;

Node2$: RMU /VERIFY MFP
 .
 .
 .
%RMU−F−OPNFILERR, error opening file U1.RDA
%RMU−F−FILNOTFND, file not found
%RMU−E−BDAREAOPN, unable to open file U1.RDA for storage area
%RMU−F−ABORTVER, fatal error encountered; aborting verification

Oracle® Rdb for OpenVMS

7.3.9 DROPped Storage Area and RMU /VERIFY in Cluster 218

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /VERIFY Utility now correctly
detects storage areas that have been dropped or moved.

7.3.10 RMU /VERIFY Checks All Storage Area Files First

Bug 671681

Previously, the RMU /VERIFY command would abort and return a fatal error to the user when a storage area
file was unable to be opened (for example, when the storage area file had been deleted). However, other
storage areas were not checked, leading to the possibility that not all problems with missing storage area files
were reported.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /VERIFY Utility now checks all
storage area files and reports problems while opening the files before returning a fatal error. This makes it
much easier to know what files must be restored with the RMU /RESTORE command.

7.3.11 RMU/SHOW STATISTICS Multi−Page Report File

Previously, the RMU /SHOW STATISTICS Utility only displayed the first page ("Page: 1 of 1") of
multi−page displays. This made it difficult, at times, to find specific information.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /SHOW STATISTICS Utility now
writes all pages of multi−page displays to the report file. Note that for some screens (storage area information,
row cache information, and so on), there can be a significant amount of data written and this can result in a
dramatic increase in the size of the report file.

7.3.12 Area Locks Demoted Statistic Not Always Correctly
Incremented

Previously, the "locks demoted" statistic for "area" locks was not always correctly incremented. This could
occur, for example, when a read−only transaction was started when the previous transaction was a read−write
transaction. The "locks promoted" statistic could have been incorrectly incremented in this case. This, in turn,
lead to potentially confusing results when comparing the "locks promoted" rate with the "locks demoted" rate
for "area" locks in the "RMU/SHOW STATISTICS" facility.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The correct statistic is now incremented when
an "area" lock is demoted from one lock mode to a lower mode.

7.3.13 RMU /BACKUP /ONLINE /NOQUIET_POINT Fails

Oracle Rdb Release 7.1.0 introduced a potential regression where the RMU /BACKUP /ONLINE
/NOQUIET_POINT command may fail with an incorrect error message indicating that it is unable to write to
the root file. This is an example of the incorrect error from the RMU /BACKUP command:

$ RMU /BACKUP /ONLINE /NOQUIET_POINT MFP NLA0:MFP
%RMU−F−FILACCERR, error writing file DUA0:[DB]MFP.RDB;1
%RMU−F−FTL_BCK, Fatal error for BACKUP operation ...

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

Oracle® Rdb for OpenVMS

7.3.10 RMU /VERIFY Checks All Storage Area Files First 219

7.4 LogMiner Errors Fixed

7.4.1 LogMiner Compresses Pre−Delete Record Content

Previously, when the Oracle Rdb LogMiner(TM) feature was enabled, the pre−delete record contents were not
compressed prior to being journaled. Because of this, it was possible for AIJ files to grow excessively if many
large records were being deleted.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. When the Oracle Rdb LogMiner feature is
enabled, pre−delete record contents are now correctly compressed. Because of the difference in pre−delete
record contents in an AIJ file, it is important that AIJ files created with prior versions of Oracle Rdb be
processed with the matching version of the Oracle Rdb LogMiner (RMU /UNLOAD /AFTER_JOURNAL
command).

When using the Oracle Rdb LogMiner feature, existing AIJ files should be backed up and processed prior to
upgrading to this release of Oracle Rdb.

Failure to use the correct version of the Oracle Rdb LogMiner to process an AIJ file typically results in
RMU−W−RECVERDIF warnings when pre−delete record contents are being processed.

LogMiner AIJ files not compatible

When the Oracle Rdb LogMiner(TM) feature is being used, AIJ files from this version of
Oracle Rdb are not compatible with the Oracle Rdb LogMiner feature from prior versions
of Oracle Rdb. Only the Oracle Rdb LogMiner feature is affected; AIJ recovery is not
affected. If the Oracle Rdb LogMiner feature is not enabled for a database, there is no
difference in the format or content of an AIJ file.

7.4 LogMiner Errors Fixed 220

7.5 Optimizer Problems Fixed in Oracle Rdb Release
7.1.0.
The following Optimizer Bugs were fixed in Oracle Rdb Release 7.1.0 but the release notes were
inadvertently left out.

7.5.1 Query Having OR Compound Predicates With Subquery
Returns Wrong Results

Bug 1527102

The following query contains the OR of three predicates: one of which is based on the results of a subquery;
one of which is a filter predicate of the form column = literal; and one of which is a constant of the form
literal = literal. The query should return 1 row.

set flags 'strategy,detail';
select t1.hmcnr from t1 t1
 where t1.ean='5410103914978' and
 (t1.shop_class = (select sho.shop_class from r_shop sho
 where sho.shop='460')
 or t1.shop_class='A'
 or 'XXX'='460');
Tables:
 0 = t1
 1 = R_SHOP
Cross block of 2 entries
 Cross block entry 1
 Aggregate: (VIA)
 Conjunct: 1.SHOP = '460'
 Conjunct: 'XXX' = '460'
 Get Retrieval sequentially of relation 1:R_SHOP
 Cross block entry 2
 Conjunct: (0.ean = '5410103914978') AND ((0.shop_class = {subselect}) OR
 (0.shop_class = 'A') OR ('XXX' = '460'))
 Get Retrieval sequentially of relation 0:t1
HMCNR
 45281
 45134
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

A filter predicate is ANDed to an OR compound predicate1.
The OR compound predicate contains a subquery predicate, a couple of filter predicates and a
constant predicate

2.

As a workaround, the query works if the constant predicate is removed.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5 Optimizer Problems Fixed in Oracle Rdb Release 7.1.0. 221

7.5.2 Query Using OR/AND Predicates With EXISTS Clause
Returns Wrong Results

Bug 1569972

The following query using AND/OR predicates with an EXISTS clause should return 1 row:

set flags 'strategy,detail';

select t1.c1 from t1 t1, t2 t2 where
((t2.c4 = 1 and
 t2.c5 = 5 and
 not exists (select * from t2 t2a <−−−−
 where t2a.c4 = 4 and t2a.c5 = 5)) or <−−−−
 (t2.c4 = 4 and t2.c5 = 5)) <−−−−
 and t1.c1 = t2.c6 <−−−−
;
Tables:
 0 = T1
 1 = T2
 2 = T2
Cross block of 3 entries
 Cross block entry 1
 Conjunct: {subselect} = 0
 Aggregate−F1: (COUNT−ANY) Index only retrieval of relation 2:T2
 Index name T2_H [2:2]
 Key: (2.C4 = 4) AND (2.C5 = 5)
 Cross block entry 2
 Conjunct: (1.C4 = 1) OR (1.C4 = 4)
 Conjunct: 1.C5 = 5
 Conjunct: {subselect} = 0
 Get Retrieval by index of relation 1:T2
 Index name T2_H [(2:2)2] Bool
 Key: ((1.C4 = 1) AND (1.C5 = 5)) OR ((1.C4 = 4) AND (1.C5 = 5))
 Bool: 1.C5 = 5
 Cross block entry 3
 Index only retrieval of relation 0:T1
 Index name T1_H [1:1]
 Key: 0.C1 = 1.C6
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

OR parent predicate with AND predicates on each branch1.
One of the OR branches also includes a subquery, such as NOT EXISTS2.
A second AND predicate is appended after the OR parent predicate3.

As a workaround, the problem can be corrected if you move the second AND predicate to the front of the OR
parent predicate, as follows:

set flags 'strategy,detail';

select t1.c1 from t1 t1, t2 t2 where
t1.c1 = t2.c6 and <−−−−
((t2.c4 = 1 and
 t2.c5 = 5 and

Oracle® Rdb for OpenVMS

7.5.2 Query Using OR/AND Predicates With EXISTS Clause Returns Wrong Results 222

 not exists (select * from t2 t2a <−−−−
 where t2a.c4 = 4 and t2a.c5 = 5)) or <−−−−
 (t2.c4 = 4 and t2.c5 = 5)) <−−−−
;

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.3 Query Using German Collating Sequence Returns Wrong
Results

Bug 1530947

The following query, in a database where the German Collating Sequence is used by default, returns wrong
results (should return some rows):

SELECT p.datum, p.produkt, p.abtlg, p.stelle
 FROM v_team_datum p,
 produkte g
 where
 p.abtlg=g.abtlg ;
Conjunct
Match
 Outer loop
 Sort Conjunct Aggregate Sort Conjunct
 Leaf#01 BgrOnly PROD_DATEN Card=24063
 BgrNdx1 IDX_PROD_DATEN_SORT [1:1] Fan=8
 Inner loop (zig−zag)
 Conjunct Get Retrieval by index of relation PRODUKTE
 Index name IDX_PRODUKTE_SORT [0:0]
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The query is a simple join between a view and one table, with the join predicate of CHAR data type1.
The optimizer uses a match strategy to join them, where a comparison of the join keys requires the
process of encoding the CHAR data type into the German collating sequence

2.

As a workaround, the query works if a view with the same attributes as the table is used instead of the table
itself, as in the following example:

SELECT p.datum, p.produkt, p.abtlg, p.stelle
 FROM v_team_datum p,
 view_produkte g
 where
 p.abtlg=g.abtlg ;
Cross block of 2 entries
 Cross block entry 1
 Conjunct Aggregate Sort Conjunct
 Leaf#01 BgrOnly PROD_DATEN Card=24063
 BgrNdx1 IDX_PROD_DATEN_SORT [1:1] Fan=8
 Cross block entry 2
 Leaf#02 FFirst PRODUKTE Card=25
 BgrNdx1 IDX_PRODUKTE_SORT [3:3] Fan=6

The query works because the optimizer applies a cross strategy instead of a match strategy.

Oracle® Rdb for OpenVMS

7.5.3 Query Using German Collating Sequence Returns Wrong Results 223

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.4 Left Outer Join Query Returns Wrong Results When ON
Clause Evaluates to False

Bug 1581632

The following left outer join query returns wrong results when the join conditions in the ON clause evaluate to
false for all rows:

set flags 'strategy,detail';
select tt.employee_id, tt.last_name, jh.job_code
from
 (select e.employee_id, e.last_name
 from degrees d, employees e where
 e.employee_id = '00354'
 and d.employee_id = e.employee_id) as tt
 left outer join
 job_history jh
 on tt.last_name = '?' and <−−−−
 jh.job_code = tt.employee_id; <−−−−
Tables:
 0 = DEGREES
 1 = EMPLOYEES
 2 = JOB_HISTORY
Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Conjunct: "tt.last_name" = '?'
 Merge of 1 entries
 Merge block entry 1
 Cross block of 2 entries
 Cross block entry 1
 Get Retrieval by index of relation 1:EMPLOYEES
 Index name EMPLOYEES_HASH [1:1] Direct lookup
 Key: 1.EMPLOYEE_ID = '00354'
 Cross block entry 2
 Index only retrieval of relation 0:DEGREES
 Index name DEG_EMP_ID [1:1]
 Key: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 Cross block entry 2
 Conjunct: ("tt.last_name" = '?') AND
 (2.JOB_CODE = tt.employee_id)
 Get Retrieval by index of relation 2:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

Left outer join query on a subquery and job_history of mf_personnel database1.
ON clause containing two or more predicates, and the ON clause evaluates to false for all rows, for
example:

"last_name" = '?' and jh.job_code = tt.employee_id

2.

There is no known workaround for this problem.

Oracle® Rdb for OpenVMS

7.5.4 Left Outer Join Query Returns Wrong Results When ON Clause Evaluates to False 224

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.5 Query With Two IN Clauses on Two Subqueries Returns
Wrong Results

Bug 1585429

The following query with two IN clauses on two subqueries with different match keys, returns a count of 0
when it should return a non−0 count:

SELECT count(*) FROM t1
WHERE
 subclass_id IN (SELECT DISTINCT subclass_id
 FROM t2
 WHERE class_id = 'CAJ_C01#')
 AND
 recipe_id IN (SELECT recipe_id
 FROM t3
 WHERE eqp_id = 'CAR−02C'
)
;
Aggregate Conjunct
Match
 Outer loop
 Conjunct
 Match
 Outer loop
 Get Retrieval by index of relation t1
 Index name t1_ndx [0:0]
 Inner loop (zig−zag)
 Aggregate−F1 Conjunct
 Index only retrieval of relation t2
 Index name t2_ndx [0:0]
 Inner loop (zig−zag)
 Aggregate−F1 Conjunct Get
 Retrieval by index of relation t3
 Index name t3_ndx [1:1]

 0
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

Two different IN clauses on two subqueries, with different match keys1.
The query applies a match strategy where the outer leg uses the match key (subclass_id) of another
match stream that is different from the other key (recipe_id) of the inner leg without sorting the
results of the outer leg using the match key (subclass_id).

2.

Oracle Rdb7 Release 7.0.5 applies a sort node on the outer leg and thus returns the correct results.

As a workaround, use a query outline to change the strategy to cross from match.

This problem has been corrected in Oracle Rdb Release 7.1.0.

Oracle® Rdb for OpenVMS

7.5.5 Query With Two IN Clauses on Two Subqueries Returns Wrong Results 225

7.5.6 Query Having Same SUBSTRINGs Within CASE Expression
Returns Wrong Results

Bugs 1489972, 1485656, 975091

The following queries, containing the same SUBSTRING expressions within a CASE expression, return
wrong results.

The following example shows two simple queries (from Bug 1485656 and Bug 975091) having the same
subexpression (SUBSTRING) appearing more than once within the CASE expression. The query in the case
of Bug 1489972 is more complicated and thus omitted here. It contains unions of several subselect queries
with nested views and SUBSTRING/CASE expressions.

! Bug 1485656
! should return the value 1 for the content of y
! ~Xt: Content of y = 1
!
set FLAGS 'TRACE'
declare :x char(2);
declare :y char(1);
begin
set :x='21';
set :y= case
 when ((substring(:x from 1 for 1)='1') and
 (substring(:x from 2 for 1)='1'))
 then 'O'
 else
 (substring(:x from 2 for 1))
 end;
trace 'Content of y = ', :y ;
end;
The output is:
~Xt: Content of y =

! Bug 975091
! should return the value of 295 for the column RESP
!
create table t1 (c1 char(12));
insert into t1 value ('29500000199');

select substring(c1 from 1 for 3) ress,
 case
 when 'a' = 'c' and (substring(c1 from 1 for 3)) = '295'
 then 'a'
 when 'c' = 'c'
 then (substring(c1 from 1 for 3))
 else ' '
 end resp
 from t1;
RESS RESP
295
1 row selected

The key parts of these queries which contributed to the situation leading to the errors are these:

CASE expression contains several similar expressions1.

Oracle® Rdb for OpenVMS

7.5.6 Query Having Same SUBSTRINGs Within CASE Expression Returns Wrong Results 226

The expression in the WHEN clause is shared in the same clause of another WHEN clause (in the
case of Bug 975091)

2.

The expression in the WHEN clause is shared in another part of the CASE statement, such as an
ELSE clause (in the case of Bug 1485656)

3.

In the case of Bug 1485656, a workaround is to use an IF instead of a CASE statement to get the correct
results:

set FLAGS 'TRACE'
declare :x char(2);
declare :y char(1);
begin
set :x='21';
 if ((substring(:x from 1 for 1)='1') and
 (substring(:x from 2 for 1)='1'))
 then
 set :y='O';
 else
 set :y=(substring(:x from 2 for 1));
 end if;
trace 'Content of y:',:y;
end;

Another workaround is to use temporary variables for the substrings.

In the case of Bug 975091, the workaround is to swap the WHEN clauses, as in the following example:

select substring(c1 from 1 for 3) ress,
 case
 when 'c' = 'c'
 then (substring(c1 from 1 for 3)) ! <= 1st
 when 'a' = 'c' and (substring(c1 from 1 for 3)) = '295' ! <= 2nd
 then 'a'
 else ' '
 end resp
 from t1;

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.7 Aggregate Query With Nested MIN Function Returns
Wrong Results

Bug 1408892

The following query should return the value of ADMN for min(d1.department_code):

create index dept_managerid_code_ndx on departments
 (manager_id,department_code);

select min(d1.department_code),
 min((select min (d2.department_code)
 from departments d2
 where d1.manager_id = d2.manager_id AND
 d2.budget_actual > 0))
 from departments d1;

Oracle® Rdb for OpenVMS

7.5.7 Aggregate Query With Nested MIN Function Returns Wrong Results 227

 NULL NULL
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

The subselect query has "where" predicates which cause the query to return 0 rows, e.g.
"d2.budget_actual > 0"

1.

The subselect query contains an aggregate function, e.g. MIN2.
The subselect query is wrapped inside another aggregate function, e.g. MIN3.

As a workaround to this problem, the query works if the MIN function is removed from the column
'd2.department_code' in the inner subselect, as seen in the following example.

select min(d1.department_code),
 min((select d2.department_code
 from departments d2
 where d1.manager_id = d2.manager_id AND
 d2.budget_actual > 0))
 from departments d1;

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.8 Query with UNION Subselect Returns Wrong Results

Bug 1656974

The following query with UNION subselect should return 0 rows.

set flags 'strategy,detail';
select ps.id, ps.kbn, ps.ymd
 from (select ps1.id,
 ps1.kbn,
 '99999999' ! <== this causes the problem
 from ps ps1, pm pm
 where pm.id = ps1.id
 union all
 select ps2.id,
 ps2.kbn,
 ps2.end_ymd
 from ps ps2, pm pm
 where pm.id = ps2.id)

 as ps (id, kbn, ymd)
 where ps.id = '021023307' and
 ps.ymd > '12345678' and
 ps.kbn in ('1','2') ;
Tables:
 0 = PS
 1 = PM
 2 = PS
 3 = PM
Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 1.id = 0.ID
 Match

Oracle® Rdb for OpenVMS

7.5.8 Query with UNION Subselect Returns Wrong Results 228

 Outer loop (zig−zag)
 Conjunct: 0.ID = '021023307'
 Conjunct: '99999999' > '12345678'
 Get Retrieval by index of relation 0:PS
 Index name IDX_PS_2 [1:1] Bool
 Key: <mapped field> = '021023307'
 Bool: '99999999' > '12345678'
 Inner loop (zig−zag)
 Index only retrieval of relation 1:PM
 Index name IDX_PM_0 [0:0]
 Merge block entry 2
 Conjunct: 3.id = 2.ID
 Match
 Outer loop (zig−zag)
 Conjunct: (2.ID = '021023307') AND (2.end_ymd > '12345678')
 AND ((2.kbn = '1') OR (2.kbn = '2'))
 Get Retrieval by index of relation 2:PS
 Index name IDX_PS_2 [2:1]
 Key: (<mapped field> = '021023307') AND (<mapped field> > '12345678'
)
 Inner loop (zig−zag)
 Index only retrieval of relation 3:PM
 Index name IDX_PM_0 [0:0]
 ID KBN YMD
 021023307 0 99999999
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

The query contains a subselect of a UNION, where one of the columns is a literal, e.g. '99999999'.1.
The where clause contains an equality predicate, a GTR predicate, and an IN clause.2.

As a workaround, the query works if the IN clause is moved before the GTR predicate, as in the following
example.

set flags 'strategy,detail';
! The following query should return 0 rows
!
select ps.ID, ps.kbn, ps.ymd
 from (select ps1.ID,
 ps1.kbn,
 '99999999'
 from ps ps1, pm pm
 where pm.id = ps1.ID
 union all
 select ps2.id,
 ps2.kbn,
 ps2.end_ymd
 from ps ps2, pm pm
 where pm.id = ps2.id)

 as ps (id, kbn, ymd)
 where ps.id = '021023307' and
 ps.kbn in ('1','2') and <=== moved
 ps.ymd > '12345678' ;

This problem has been corrected in Oracle Rdb Release 7.1.0.

Oracle® Rdb for OpenVMS

7.5.8 Query with UNION Subselect Returns Wrong Results 229

7.5.9 Query with CONCATENATE in BETWEEN Clause Returns
Wrong Results

Bug 1663038

The following query uses the CONCATENATE function in the BETWEEN clause. It should return 3 rows,
but it returns only 1 row.

SQL> sh tab ORDER;
Information for table ORDER

 Columns for table ORDER:
 Column Name Data Type Domain
 −−−−−−−−−−− −−−−−−−−− −−−−−−
 ORDER_NO CHAR(4)
 Not Null constraint ORDER_NO_NOT_NULL
 SHIP_DATE CHAR(8)
 Not Null constraint ORDER_NOT_NULL
 SHIP_STAT CHAR(1)
 Not Null constraint ORDER_NOT_NULL
...etc...

Table constraints for ORDER:
ORDER_NOT_NULL
 Not Null constraint
 Column constraint for ORDER.SHIP_DATE
 Evaluated on COMMIT
 Source:
 ORDER.SHIP_DATE NOT null
...etc...

SQL> sel order_no from customer;
 ORDER_NO
 1ED0
 1j80
 1a78
3 rows selected
SQL> sel order_no,ship_date,ship_stat from order;
 ORDER_NO SHIP_DATE SHIP_STAT
 1ED0 20010301 b
 1a78 20010228 a
 1j80 20010301 a
3 rows selected

set flags 'strategy,detail';
set flags 'max_stab';
select a.order_no, a.ship_date, a.ship_stat
from ORDER a, CUSTOMER b
where a.order_no = b.order_no and
 ((a.SHIP_DATE || a.SHIP_STAT)
 BETWEEN '20010228a' '20010301d') ;
Tables:
 0 = ORDER
 1 = CUSTOMER
Cross block of 2 entries
 Cross block entry 1
 Conjunct:

Oracle® Rdb for OpenVMS

7.5.9 Query with CONCATENATE in BETWEEN Clause Returns Wrong Results 230

 (0.SHIP_DATE > SUBSTRING ('20010228a' FROM 0 FOR 8)) OR
 ((0.SHIP_DATE = SUBSTRING ('20010228a' FROM 0 FOR 8)) AND
 (0.SHIP_STAT >= SUBSTRING ('20010228a' FROM 8)))
 Conjunct:
 ((0.SHIP_DATE < SUBSTRING ('20010301d' FROM 0 FOR 8)) AND
 NOT MISSING (0.SHIP_STAT)) OR
 ((0.SHIP_DATE = SUBSTRING ('20010301d' FROM 0 FOR 8)) AND
 (0.SHIP_STAT <= SUBSTRING ('20010301d' FROM 8)))
 Get Retrieval by index of relation 0:ORDER
 Index name ORDER_UM01 [0:0]
 Cross block entry 2
 Index only retrieval of relation 1:CUSTOMER
 Index name CUSTOMER_UM01 [1:1] Direct lookup
 Key: 0.ORDER_NO = 1.ORDER_NO
 A.ORDER_NO A.SHIP_DATE A.SHIP_STAT
 1a78 20010228 a
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

The table columns contain NOT NULL constraints.1.
The query contains a BETWEEN clause with CONCATENATE function on two columns.2.

As a workaround, the query works if the column constraint ORDER_NOT_NULL is removed from the
columns of table ORDER.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.10 ORDER BY Query With GROUP BY on Two Joined
Derived Tables Returns Wrong Results

Bug 1694233

The following query with GROUP BY and ORDER BY clauses on two joined derived tables returns the
results in the wrong order.

set flags 'strategy,detail';

select
 cast (a.name as char(5)) as name,
 a.datum
 from (select name, datum,
 cast (count (*) as integer) as count_a
 from a
 group by name, datum) a
 join
 (select name, datum,
 cast (count (*) as integer) as count_b
 from b
 group by name, datum) b
 on a.name = b.name
 and a.datum = b.datum
 group by a.name, b.name, a.datum, b.datum, count_a
 order by name desc, a.datum asc
 ;
Tables:

Oracle® Rdb for OpenVMS

7.5.10 ORDER BY Query With GROUP BY on Two Joined Derived Tables Returns Wrong Results231

 0 = A
 1 = B
Reduce: 0.NAME, 0.DATUM, 1.NAME, 1.DATUM, CAST (<mapped field> AS INT)
Sort: 0.NAME(a), 0.DATUM(a), 1.NAME(a), 1.DATUM(a), CAST (<mapped field> AS INT)
 (a)
Cross block of 2 entries
 Cross block entry 1
 Merge of 1 entries
 Merge block entry 1
 Aggregate: COUNT (*)
 Sort: 0.NAME(a), 0.DATUM(a)
 Get Retrieval sequentially of relation 0:A
 Cross block entry 2
 Merge of 1 entries
 Merge block entry 1
 Aggregate: COUNT (*)
 Sort: 1.NAME(a), 1.DATUM(a)
 Conjunct: (0.NAME = 1.NAME) AND (0.DATUM = 1.DATUM)
 Get Retrieval sequentially of relation 1:B
 A.NAME A.DATUM
 AAAA 1−JAN−2000 00:00:00.00 <=== BBBB should be followed by AAAA
 BBBB 1−JAN−2000 00:00:00.00
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query contains a GROUP BY clause on the columns of the two joined derived tables with
GROUP BY.

1.

One of the columns from the derived tables is cast as the same data type.2.
The ORDER BY clause references the cast column but using descending order.3.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.11 Left Outer Join Query With CONCATENATE Returns
Wrong Results

Bug 1680135

The following left OJ query with CONCATENATE should return 1 row but instead returns 0 rows.

set flags 'strategy,detail';
SELECT ttt.entity_id,
 ttt.cpty_id,
 ttt.trade_count
FROM (SELECT tt.entity_id,
 tt.cpty_id,
 SUM (tt.trade_count) as trade_count
 FROM (SELECT df.entity_id,
 df.cpty_id,
 case
 when df.deal_status = 'X' then 1 else 0
 end as trade_count
 from deal_folder df) as tt
 GROUP BY tt.entity_id, tt.cpty_id) as ttt

Oracle® Rdb for OpenVMS

7.5.11 Left Outer Join Query With CONCATENATE Returns Wrong Results 232

 LEFT OUTER JOIN
 contact c ON (c.cpty_id = ttt.cpty_id)
 WHERE
 ttt.trade_count <> 0
 and ttt.entity_id || ttt.cpty_id > '' ! <== this is causing problem
 ;
Tables:
 0 = DEAL_FOLDER
 1 = CONTACT
Conjunct: (<mapped field> <> 0) AND ((0.ENTITY_ID || 0.CPTY_ID) > '') <=(1)
Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Conjunct: <mapped field> <> 0
 Merge of 1 entries
 Merge block entry 1
 Aggregate: SUM (CASE (WHEN (0.DEAL_STATUS = 'X') THEN 1
 ELSE 0))
 Sort: 0.ENTITY_ID(a), 0.CPTY_ID(a)
 Merge of 1 entries
 Merge block entry 1
 Conjunct: (0.ENTITY_ID || 0.CPTY_ID) > ''
 Index only retrieval of relation 0:DEAL_FOLDER
 Index name DEAL_FOLDER_MONITOR_IDX [0:0]
 Cross block entry 2
 Conjunct: (<mapped field> <> 0) AND ((0.ENTITY_ID || 0.CPTY_ID) > '') <=(2)
 Conjunct: 1.CPTY_ID = 0.CPTY_ID
 Index only retrieval of relation 1:CONTACT
 Index name CONTACT_IDX [0:0]
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query is a left outer join between a derived table and a table.1.
The derived table contains a GROUP BY clause on the columns of another derived table with an
aggregate function SUM as the output column.

2.

The main query has a WHERE predicate containing the CONCATENATE function on two or more
columns of the derived table.

3.

The main query has another WHERE predicate which references the output column of the aggregate
function from the derived table.

4.

As a workaround, the query works if the table 1:CONTACT has some rows or the following
CONCATENATE function is replaced by the following predicates:

 ttt.entity_id || ttt.cpty_id > ''

 is replaced by

 ttt.entity_id > '' AND ttt.cpty_id > ''

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.12 Query With UNION in German Collating Sequence Returns
Wrong Results

Bug 1684612

Oracle® Rdb for OpenVMS

7.5.12 Query With UNION in German Collating Sequence Returns Wrong Results 233

The following query with a UNION clause, in a database where the German Collating Sequence is used by
default, returns wrong results (it should return some rows).

select d.datum, d.id, d.team
from teamer d,
 (select s.datum,s.id, s.team
 from team_datum s
 union all
 select datum, id, team
 from team_datum
) as s
where
 d.datum=s.datum
 ;
Tables:
 0 = teamer
 1 = team_datum
 2 = team_datum
Conjunct: 0.datum = <mapped field>
Match
 Outer loop
 Sort: <mapped field>(a)
 Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Get Retrieval sequentially of relation 1:team_datum
 Merge block entry 2
 Get Retrieval sequentially of relation 2:team_datum
 Inner loop
 Temporary relation
 Sort: <mapped field>(a)
 Get Retrieval sequentially of relation 0:teamer
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The query is a simple join between a table and a derived table of subselects unioned together.1.
The join predicate uses CHAR data type.2.
The Optimizer uses a match strategy to join them, where a comparison of the join keys requires the
process of encoding the CHAR data type into German collating sequence.

3.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.13 Query With OR Predicate on Aggregate Column Returns
Wrong Results

Bugs 1708342 and 1721323

Query #1:

The following query with an OR predicate should return 1 row with T1.STATUS = 3 but returns an extra row
with T1.STATUS = 5. This row does not satisfy the condition in the predicate "x.summe is null".

Oracle® Rdb for OpenVMS

7.5.13 Query With OR Predicate on Aggregate Column Returns Wrong Results 234

set flags 'max_stability';
set flags 'strategy,detail';
select
 t1.id,
 t1.status,
 t1.anzahl_stuecke,
 x.summe
 from table1 t1,
 (select sum(anzahl_stuecke) as summe
 from table2 t2
 where t1.id = t2.id) x
 where
 t1.status = 3
 OR
 (t1.status = 5 and x.summe is null) ;
Tables:
 0 = TABLE1
 1 = TABLE2
Cross block of 2 entries
 Cross block entry 1
 Conjunct: (0.STATUS = 3) OR (0.STATUS = 5)
 Get Retrieval by index of relation 0:TABLE1
 Index name XPKTABLE1 [0:0]
 Cross block entry 2
 Merge of 1 entries
 Merge block entry 1
 Aggregate: SUM (1.ANZAHL_STUECKE)
 Get Retrieval by index of relation 1:TABLE2
 Index name XPKTABLE2 [1:1]
 Keys: 0.ID = 1.ID
 T1.ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
 1 3 10 NULL
 2 5 10 10
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query joins a table and a derived table with a column of an aggregate function (e.g. SUM).1.
The WHERE clause contains an OR predicate, where one of the branches references the aggregated
column.

2.

As a workaround, the query works if the branches of the OR predicates are swapped, as in the following
example.

select
 t1.id,
 t1.status,
 t1.anzahl_stuecke,
 x.summe
 from table1 t1,
 (select sum(anzahl_stuecke) as summe
 from table2 t2
 where t1.id = t2.id) x
 where
 (t1.status = 5 and x.summe is null)
 OR
 t1.status = 3 ;
Tables:

Oracle® Rdb for OpenVMS

7.5.13 Query With OR Predicate on Aggregate Column Returns Wrong Results 235

 0 = TABLE1
 1 = TABLE2
Cross block of 2 entries
 Cross block entry 1
 Get Retrieval by index of relation 0:TABLE1
 Index name XPKTABLE1 [0:0]
 Cross block entry 2
 Conjunct: ((0.STATUS = 5) AND MISSING (var) OR (0.STATUS = 3)
 Merge of 1 entries
 Merge block entry 1
 Aggregate: SUM (1.ANZAHL_STUECKE)
 Get Retrieval by index of relation 1:TABLE2
 Index name XPKTABLE2 [1:1]
 Keys: 0.ID = 1.ID
 T1.ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
 1 3 10 NULL
1 row selected

Query #2:

The following query with an OR predicate should return 0 rows.

set flags 'max_stability';
set flags 'strategy,detail';
select
 t1.id,
 t1.status,
 t1.anzahl_stuecke,
 x.summe
 from table1 t1,
 (select
 sum(anzahl_stuecke) as summe,
 'hello' as Artikel
 from table2 t2
 where t1.id = t2.id) x
 where
 t1.id <> 5 and
 x.Artikel = 'hello should not be found' and
 ((t1.status =3) or
 (t1.status = 5 and (x.summe is NULL))
);
Tables:
 0 = TABLE1
 1 = TABLE2
Cross block of 2 entries
 Cross block entry 1
 Get Retrieval by index of relation 0:TABLE1
 Index name XPKTABLE1 [0:0]
 Bool: 0.ID <> 5
 Cross block entry 2
 Conjunct: (0.STATUS = 3) OR ((0.STATUS = 5) AND MISSING (var)
 Merge of 1 entries
 Merge block entry 1
 Aggregate: SUM (1.ANZAHL_STUECKE)
 Get Retrieval by index of relation 1:TABLE2
 Index name XPKTABLE2 [1:1]
 Keys: 0.ID = 1.ID
 Bool: (1.ID <> 5) AND ('hello' = 'hello should not be found')
 T1.ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
 1 3 10 NULL

Oracle® Rdb for OpenVMS

7.5.13 Query With OR Predicate on Aggregate Column Returns Wrong Results 236

 2 5 10 NULL
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query joins a table and a derived table with the column of an aggregate function (e.g. SUM)
and a column of a constant string.

1.

The WHERE clause contains an OR predicate, where one of the branches references the aggregate
column.

2.

The WHERE clause contains additional AND predicates where one of them references the column of
a constant string.

3.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.14 Query With Equality Predicate Included in IN Clause
Returns Wrong Results

Bug 1727181

The following query with an equality predicate included in the IN clause should find the row.

set flags 'strategy,detail';
sel employee_id
 from employees e, departments d
 where
 e.employee_id = d.manager_id and
 d.department_code in ('ADMN', 'ENG', 'MKTG') and
 d.department_code = 'ENG'
 ;
Tables:
 0 = EMPLOYEES
 1 = DEPARTMENTS
Cross block of 2 entries
 Cross block entry 1
 Conjunct: (1.DEPARTMENT_CODE = 'ADMN') OR (1.DEPARTMENT_CODE = 'MKTG')
 Conjunct: 1.DEPARTMENT_CODE = 'ENG'
 Index only retrieval of relation 1:DEPARTMENTS
 Index name DEPT_DEPTCODE_MGRID [1:1]
 Keys: 1.DEPARTMENT_CODE = 'ENG'
 Cross block entry 2
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPID_STATUS_CODE [1:1]
 Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The query joins two tables using a join predicate.1.
The query has an equality predicate which is also included in the IN clause.2.

Oracle® Rdb for OpenVMS

7.5.14 Query With Equality Predicate Included in IN Clause Returns Wrong Results 237

As a workaround, the query works if the equality predicate is moved to the front of the IN clause, as in the
following example.

set flags 'strategy,detail';
sel employee_id
 from employees e, departments d
 where
 e.employee_id = d.manager_id and
 d.department_code = 'ENG' and <== move to front
 d.department_code in ('ADMN', 'ENG', 'MKTG')
 ;
Tables:
 0 = EMPLOYEES
 1 = DEPARTMENTS
Cross block of 2 entries
 Cross block entry 1
 Conjunct: 1.DEPARTMENT_CODE = 'ENG'
 Conjunct: (1.DEPARTMENT_CODE = 'ADMN') OR (1.DEPARTMENT_CODE = 'ENG') OR (
 1.DEPARTMENT_CODE = 'MKTG')
 Index only retrieval of relation 1:DEPARTMENTS
 Index name DEPT_DEPTCODE_MGRID [1:1]
 Keys: 1.DEPARTMENT_CODE = 'ENG'
 Cross block entry 2
 Conjunct: 1.DEPARTMENT_CODE = 'ENG'
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPID_STATUS_CODE [1:1]
 Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID
 E.EMPLOYEE_ID
 00471
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.15 Match Strategy on Columns of Different Size, Using
Collating Sequence, Returns Wrong Results

Bug 1684643

The following query using match strategy on columns of different size, using German collating sequence,
should find the row.

select d.datum, d.abtlg, d.team, d.art
from teamergebnis_kumul d,
 (select m.datum,m.abtlg, m.art, m.team
 from std_team_datum m, prod_kumul_datum v
 where m.datum=v.datum and
 m.abtlg=v.abtlg and
 m.team=v.produkt AND
 m.team='11.3512'
 group by m.datum, m.abtlg, m.art, m.team) AS
 s (datum, abtlg, art, team)
where d.datum=s.datum and
 d.abtlg=s.abtlg and
 d.team=s.team and
 d.art=s.art and
 d.abtlg='465' and d.datum='20001031' and

Oracle® Rdb for OpenVMS

7.5.15 Match Strategy on Columns of Different Size, Using Collating Sequence, Returns Wrong Results238

 d.team='11.3512';
Tables:
 0 = TEAMERGEBNIS_KUMUL
 1 = STD_TEAM_DATUM
 2 = PROD_KUMUL_DATUM
Cross block of 2 entries
 Cross block entry 1
 Conjunct: 0.TEAM = '11.3512'
 Get Retrieval by index of relation 0:TEAMERGEBNIS_KUMUL
 Index name IDX_TEAMERGEBNIS_KUMUL_SORT [3:3]
 Keys: (0.TEAM = '11.3512') AND (0.DATUM = '20001031') AND (0.ABTLG =
 '465')
 Cross block entry 2
 Conjunct: 0.ABTLG = 1.ABTLG
 Conjunct: 0.TEAM = 1.TEAM
 Conjunct: 0.ART = 1.ART
 Merge of 1 entries
 Merge block entry 1
 Reduce: 1.TEAM, 1.ABTLG, 1.DATUM, 1.ART
 Sort: 1.TEAM(a), 1.ABTLG(a), 1.DATUM(a), 1.ART(a)
 Conjunct: (1.DATUM = 2.DATUM) AND (1.ABTLG = 2.ABTLG) AND (1.TEAM =
 2.PRODUKT)
 Match
 Outer loop
 Sort: 1.TEAM(a), 1.ABTLG(a), 1.DATUM(a)
 Conjunct: 1.TEAM = '11.3512'
 Get Retrieval by index of relation 1:STD_TEAM_DATUM
 Index name IDX_STD_TEAM_DATUM_SORT [2:2]
 Keys: (0.DATUM = 1.DATUM) AND (1.ABTLG = '465')
 Inner loop
 Temporary relation
 Sort: 2.PRODUKT(a), 2.ABTLG(a), 2.DATUM(a)
 Conjunct: 2.PRODUKT = '11.3512'
 Get Retrieval by index of relation 2:PROD_KUMUL_DATUM
 Index name IDX_PROD_KUMUL_DATUM_SORT [2:2]
 Keys: (2.DATUM = 0.DATUM) AND (2.ABTLG = '465')
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The main query is a simple join between a table and a derived table of subselect subquery, joining two
tables using 3 equality predicates.

1.

The join predicate uses columns of CHAR data type but different column size.2.
The optimizer uses a match strategy to join them, where a comparison of the join keys requires the
process of encoding the CHAR data type into German collating sequence.

3.

As a workaround, the query works if the match strategy is changed to use cross by using an outline.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.16 Left Outer Join Query With CAST Function on USING
Column Bugchecks

Bug 1802653

The following left outer join query with CAST function on USING column bugchecks.

Oracle® Rdb for OpenVMS

7.5.16 Left Outer Join Query With CAST Function on USING Column Bugchecks 239

select count(*) from
(select p.paketwert from
 (select
 cast(packet as integer) ! <=== CAST causing bugcheck
 from
 serien inner join sujet using (sujet)
) as p (paketwert)
) as astpreis (paketwert)
left outer join
(select t.paketwert from
 (select
 packet
 from
 serien inner join sujet using (sujet)
) as t (paketwert)
) as opt(paketwert)
USING (paketwert) ;

The key parts of this query which contributed to the situation leading to the error are these:

The main query is a left outer join of 2 nested derived tables.1.
The CAST function is placed on the column of USING clause.2.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

7.5.17 Query Using Constant Values in OR Predicates Returns
Wrong Results

Bug 1769447

The following query using constant values in OR predicates should return 3 rows.

set flags 'strategy,detail';

SELECT col1 FROM
 (SELECT
 t2.col1 as col1,
 t2.col2 as col2,
 t2.col3 as col3
 from table1 t1, table2 t2
 where t1.col1_id = t2.col1_id
) as
 vt (col1, col2, col3)
WHERE
 vt.col3 > 0 AND
 vt.col2 >= 0 AND
 (vt.col1 <= 3 OR 'hostvar' = 'foo');
Tables:
 0 = TABLE1
 1 = TABLE2
Merge of 1 entries
 Merge block entry 1
 Conjunct: 0.col1_id = 1.col1_id
 Match

Oracle® Rdb for OpenVMS

7.5.17 Query Using Constant Values in OR Predicates Returns Wrong Results 240

 Outer loop (zig−zag)
 Index only retrieval of relation 0:TABLE1
 Index name TABLE1_NDX [0:0]
 Inner loop (zig−zag)
 Conjunct: (1.col3 > 0) AND (1.col2 >= 0)
 Get Retrieval by index of relation 1:TABLE2
 Index name TABLE2_NDX [0:0]
 Bool: <error: common keyonly boolean no predicates>
 COL1
 1
 2
 3
 4
 5
 6
6 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The query selects from a derived table of a subselect joining 2 tables.1.
The WHERE clause contains 2 AND predicates and 1 OR predicate.2.
The OR predicate contains a branch of constant predicates, such as "1 = 2".3.

As a workaround, the query works if the constant condition "'hostvar' = 'foo'" is omitted, as in the following
example.

set flags 'strategy,detail';

SELECT col1 from
 (SELECT
 t2.col1 as col1,
 t2.col2 as col2,
 t2.col3 as col3
 from table1 t1, table2 t2
 where t1.col1_id = t2.col1_id
) as
 vt (col1, col2, col3)
WHERE
 vt.col3 > 0 AND
 vt.col2 >= 0 AND
 (vt.col1 <= 3
! OR 'hostvar' = 'foo' <=== commented out
);
Tables:
 0 = TABLE1
 1 = TABLE2
Merge of 1 entries
 Merge block entry 1
 Conjunct: 0.col1_id = 1.col1_id
 Match
 Outer loop (zig−zag)
 Index only retrieval of relation 0:TABLE1
 Index name TABLE1_NDX [0:0]
 Inner loop (zig−zag)
 Conjunct: (1.col3 > 0) AND (1.col2 >= 0) AND (1.col1 <= 3)
 Get Retrieval by index of relation 1:TABLE2
 Index name TABLE2_NDX [0:0]
 Bool: 1.col1 <= 3
 COL1

Oracle® Rdb for OpenVMS

7.5.17 Query Using Constant Values in OR Predicates Returns Wrong Results 241

 1
 2
 3
3 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.

Oracle® Rdb for OpenVMS

7.5.17 Query Using Constant Values in OR Predicates Returns Wrong Results 242

Chapter 8
Enhancements

Chapter 8 Enhancements 243

8.1 Enhancements Provided in Oracle Rdb Release
7.1.1

8.1.1 Scan Intrusion Security Now Supported

Oracle Rdb now supports intrusion detection via the OpenVMS Security Services. See the "OpenVMS Guide
to System Security" manual for more information on this feature.

This change is available in Oracle Rdb Release 7.1.1. Customers are encouraged to upgrade to this version to
pick up this security enhancement.

8.1 Enhancements Provided in Oracle Rdb Release 7.1.1 244

8.2 Enhancements Provided in Oracle Rdb Release
7.1.0.4

8.2.1 RMU Unload After_Journal Wildcard Table Names

The RMU Unload After_Journal command now supports wildcard processing of table names. The asterisk (*)
and the percent sign (%) wildcard characters can be used in the table name specification to select all tables
that satisfy the components you specify. The asterisk matches zero or more characters and the percent sign
matches a single character.

For table name specifications that contain wild card characters, if the first character of the string is a pound
sign (#), the wildcard specification is changed to a not matching comparison. This allows exclusion of tables
based on a wildcard specification. The pound sign designation is only evaluated when the table name
specification contains an asterisk or percent sign.

For example, a table name specification of * indicates that all tables in the database are to be selected. A table
name specification of "FOO%" indicates that all table names that are four characters long and that start with
the string "FOO" (such as "FOOD" and "FOOT") are to be selected.

A table name specification of "#*FOO*" specifies that all table names that do not contain the string "FOO"
(excluding those tables such as "FOOD", "SEAFOOD" and "BUFFOONS") are to be selected.

8.2.2 Enhancements to RMU Extract

Bug 2130670

This release of Oracle Rdb improves the extraction of complex metadata items such as views and triggers.

Improved extract of derived tables.
In previous versions, Rdb would use derived column names based on position, for example F1, F2,
etc. In this release, Rdb tries to promote the column names from the base table into the derived
column name list. The result should be a more readable representation of the view or trigger
definition.
In the following example, the column name EMPLOYEE_ID is propagated through the derived table.
In previous releases, this would be named using a generic label F1.

create view SAMPLE_V
 (EMPLOYEE_ID,
 COUNTS) as
 select
 C1.EMPLOYEE_ID,
 C1.F2
 from
 (select C2.EMPLOYEE_ID,
 (select count(*) from SALARY_HISTORY C3
 where (C3.EMPLOYEE_ID = C2.EMPLOYEE_ID))
 from JOB_HISTORY C2) as C1 (EMPLOYEE_ID, F2)
 order by C1.F2 asc;

•

Improved extract of IS NOT NULL clause.•

8.2 Enhancements Provided in Oracle Rdb Release 7.1.0.4 245

RMU now pushes the NOT into the expression so that it reads more naturally. For example, in
previous versions A IS NOT NULL would be extracted as the equivalent expression NOT (A IS
NULL) but now extracts (A IS NOT NULL).
New Forward_References item.
Bug 2523344
RMU Extract outputs definitions starting with the database, collating sequences, domains, external
routines, tables, indices, views and modules. This order was chosen because to reference an object it
must exist in the database.
However, with external and stored routines the definition order is often not so simple. In addition, the
use of the ALTER statement may form cyclic dependencies between objects, such as shown in this
simple example:

SQL> create domain D integer;
SQL> create module M
cont> function F (in :a D)
cont> returns D;
cont> return ABS (:a);
cont> end module;
SQL> alter domain D
cont> add
cont> check (F(value) is not null)
cont> not deferrable;

In this case, neither the domain nor the module can be defined before the other.
To alleviate these problems, RMU Extract command has a new Forward_References item that you
can include with the Item qualifier. The Forward_References item is used in conjunction with other
Item keywords, for example, /Item=(All,Forward). Use the Forward_References item to extract a set
of DECLARE FUNCTION and DECLARE PROCEDURE statements that allow definitions such as
the one shown in the previous example to succeed. See the DECLARE Routine Section in these
release notes for more information.
When the Item=Forward_References qualifier is used, RMU Extract queries the dependency
information in the database (RDB$INTERRELATIONS) and extracts DECLARE FUNCTION and
DECLARE PROCEDURE statements for only those routines which are referenced by other database
objects. The default is Noforward_References.

•

8.2.3 RMU /SET ROW_CACHE /ALTER Command

The "RMU /SET ROW_CACHE /ALTER=(...)" command has been enhanced to allow modifications to
additional parameters on a per−cache basis. The valid values for the ALTER keyword are:

NAME=cachename − Name of the cache to be modified. The cache must already be defined in the
database. This is a required parameter.

•

ENABLE − Enable the cache.•
DISABLE − Disable the cache.•
SLOT_COUNT=n − Specify the number of slots in the cache.•
SLOT_SIZE=n − Specify the size (in bytes) of each slot in the cache.•
WINDOW_COUNT=n − Specify the number of windows to use when LARGE MEMORY is
enabled. Valid values are from 10 to 65535.

•

WORKING_SET_COUNT=n − Specify the number of working set entries for the cache. Valid values
are from 1 to 100.

•

Oracle® Rdb for OpenVMS

8.2.3 RMU /SET ROW_CACHE /ALTER Command 246

SHARED_MEMORY − Specify the shared memory type and parameters for the cache. Valid
keywords are:

TYPE=PROCESS to specify traditional shared memory global section, which means that the
database global section is located in process (P0) address space and may be paged from the
processes working set as needed.

♦

TYPE=SYSTEM to specify that the database global section is located in OpenVMS Alpha
system space, which means that the section is fully resident, or pinned, in memory, does not
use process (P0) address space and does not affect the quotas of the working set of a process.

♦

TYPE=RESIDENT to specify that the database global section is memory resident in process
(P0) address space using OpenVMS Alpha shared page tables, which means that a system
space global section is fully resident, or pinned, in memory.

♦

RAD_HINT= "number" to indicate a request that memory for this shared memory should be
allocated from the specified OpenVMS Alpha Resource Affinity Domain (RAD). This
parameter specifies a hint to Oracle Rdb and OpenVMS about where memory should be
physically allocated. It is possible that if the memory is not available, it will be allocated from
other RADs in the system. For systems that do not support RADs, a RAD_HINT of zero is
always valid.
The RAD_HINT qualifier is only valid when the shared memory type is set to RESIDENT.
Setting the shared memory type to SYSTEM or PROCESS explicitly disables any previously
defined RAD hint.

Note

OpenVMS support for RADs is available only on the AlphaServer GS series
systems. For more information about using RADs, refer to the OpenVMS
Alpha Partitioning and Galaxy Guide.

♦

NORAD_HINT disables the RAD hint.♦

•

The "/ALTER=(...)" qualifier may be specified multiple times on the command line. Each /ALTER operates
on a unique cache.

For example, the following command alters two caches:

$ RMU /SET ROW_CACHE MF_PERSONNEL −
 /ALTER= (NAME = RDB$SYS_CACHE,
 SLOT_COUNT = 800, −
 WINDOW_COUNT = 25) −
 /ALTER= (NAME = RESUMES, −
 SLOT_SIZE=500, −
 WORKING_SET_COUNT = 15)

8.2.4 New Keyword SCREEN_NAME for RMU/SHOW
STATISTICS/OPTIONS

Bug 2395102

Most RMU Show Statistics screens have a Write option. The use of this option enables the user to capture the
current screen to a file named RMU.SCR.

Oracle® Rdb for OpenVMS

8.2.4 New Keyword SCREEN_NAME for RMU/SHOW STATISTICS/OPTIONS 247

The use of the new keyword Screen_Name option allows you to identify the screen capture by screen name.
For example, if you issue an RMU Show Statistics/Option=Screen_Name command, the screen capture is
written to a file that has the name of the screen with all spaces, brackets, and slashes replaced by
underscores.The file will have a .SCR extension.

For example, if you use the Option=Screen_Name option and select the Write option on the screen
Transaction Duration (Read/Write), the screen is written to a file named
TRANSACTION_DURATION_READ_WRITE.SCR.

This feature is available in Oracle Rdb Release 7.1.0.4.

8.2.5 New RMU /SET SHARED_MEMORY /TYPE Command

A new RMU /SET command "SHARED_MEMORY" has been added to allow altering of the database shared
memory configuration without requiring that the database be opened. This command requires exclusive
database access (the database can not be open or be accessed by other users).

Valid qualifiers for the "RMU /SET SHARED_MEMORY" command are:

/LOG to display a log message at the completion of the RMU /SET operation.•
/TYPE=PROCESS to specify traditional shared memory global section, which means that the
database global section is located in process (P0) address space and may be paged from the processes
working set as needed.

•

/TYPE=RESIDENT to specify that the database global section is memory resident in process (P0)
address space using OpenVMS Alpha shared page tables, which means that a system space global
section is fully resident, or pinned, in memory.

•

/TYPE=SYSTEM to specify that the database global section is located in OpenVMS Alpha system
space, which means that the section is fully resident, or pinned, in memory, does not use process (P0)
address space and does not affect the quotas of the working set of a process.

•

/RAD_HINT= "number" to indicate a request that memory for this shared memory should be
allocated from the specified OpenVMS Alpha Resource Affinity Domain (RAD). This parameter
specifies a hint to Oracle Rdb and OpenVMS about where memory should be physically allocated. It
is possible that if the memory is not available, it will be allocated from other RADs in the system. For
systems that do not support RADs, a RAD_HINT of zero is always valid.
The RAD_HINT qualifier is only valid when the shared memory type is set to RESIDENT. Setting
the shared memory type to SYSTEM or PROCESS explicitly disables any previously defined RAD
hint.

Note

OpenVMS support for RADs is available only on the AlphaServer GS series
systems. For more information about using RADs, refer to the OpenVMS Alpha
Partitioning and Galaxy Guide.

•

/NORAD_HINT disables the RAD hint.•

Oracle® Rdb for OpenVMS

8.2.5 New RMU /SET SHARED_MEMORY /TYPE Command 248

8.2.6 Zoom Option for "Process Analysis" Screen in RMU/SHOW
STATISTICS

Bug 2395153

A "Zoom" option has been added to the "Process Analysis" screen in RMU/SHOW STATISTICS. The user
will now be able to zoom−in on PIDs on this screen. This feature is available in Oracle Rdb Release 7.1.0.4.

8.2.7 Statistics Collection Performance Improvement for
AlphaServer GS Systems

NUMA (non−uniform memory access) is an attribute of a system in which access time to any given physical
memory location is not the same for all CPUs. Given this architecture, consistently good location is important
(but not necessarily 100 percent of the time) for highest performance. In the AlphaServer GS series, CPUs
access memory in their own quad building block (QBB) faster than they access memory in another QBB. The
OpenVMS operating system treats the hardware as a set of resource affinity domains (RADs). A RAD is a set
of hardware components (CPUs, memory, and I/O) with common access characteristics. On AlphaServer
GS80/160/320 systems, a RAD corresponds to a QBB.

Previously, a single copy of Oracle Rdb statistical information was maintained in a per−database memory
structure (located in the database shared memory section). There was one copy of the statistical information
for each database for all users on one OpenVMS system. Under heavy loads, the NUMA effect while
maintaining statistics information could reduce the absolute performance of an application using Oracle Rdb
due, in part, to increased memory access latency and CPU cache flushes.

The impact of this effect has been reduced. On AlphaServer GS series systems with more than one QBB
configured, the Oracle Rdb monitor process creates one global section per RAD for statistical information.
The per−RAD global section is created as "resident" and is requested to be allocated in physical memory of
the RAD. As each user attaches to the database, the user's OpenVMS defined "home" RAD is used to
determine which global section to use for statistics collection for the user. The statistics global section is
always mapped into the process's P0 virtual address space (ie, this global section is not controlled by
SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED).

Note

The global section creation requested in physical memory of a specific RAD is simply a
"hint" to OpenVMS. Memory may be obtained from other RADs if no free memory is
available at the time of allocation.

The RMU /SHOW STATISTICS utility maps all statistics global sections for a database. At each statistics
collection interval, the statistical counters from each of the RAD−specific global sections are accumulated
before display. Adding several copies of the statistics values together potentially increases the CPU
consumption of the RMU /SHOW STATISTICS utility at each sample interval. However, the run−time
performance gain by all database users should out−weigh the additional CPU cost of the RMU /SHOW
STATISTICS utility. Using a less−frequent update interval in the RMU /SHOW STATISTICS utility will
result in less CPU consumption as well.

The virtual memory consumed by processes attached to databases, the Oracle Rdb monitor (RDMMON) and
the RMU /SHOW STATISTICS utility will increase on those systems with more than one QBB configured.

Oracle® Rdb for OpenVMS

8.2.6 Zoom Option for "Process Analysis" Screen in RMU/SHOW STATISTICS 249

This is due to the mapping of multiple statistics shared memory global sections. However, because these
sections are physically resident in memory, additional working set quota should not be required. The amount
of additional virtual address space consumed is proportional to the number of RADs configured in the system,
the number of storage areas, the number of logical areas and the number of row caches configured in each
database.

Note

OpenVMS support for RADs is available only on the AlphaServer GS series systems. For
more information about using RADs, refer to the OpenVMS Alpha Partitioning and
Galaxy Guide.

8.2.8 New PRAGMA Clause Added to SQL Compound
Statements

A new PRAGMA clause has been added to the compound statement to simplify programming in the SQL
Precompiler.

Format

Oracle® Rdb for OpenVMS

8.2.8 New PRAGMA Clause Added to SQL Compound Statements 250

USAGE NOTES

The SQL Precompiler also supports the syntax BEGIN DECLARE SECTION. This clause is
ambiguous because of the BEGIN DECLARE of the compound statement. Therefore, within the
EXEC−SQL compound statement only one pragma clause can be selected. The use of the PRAGMA
list allows all options to be specified.

•

The clauses ON ALIAS, OPTIMIZE and WITH HOLD must only appear on the outermost BEGIN of
a compound statement.

•

8.2.9 New DECLARE Routine Statement

Declares a routine as forward reference for database definition statements. A routine is either a function or a
procedure.

Oracle® Rdb for OpenVMS

8.2.9 New DECLARE Routine Statement 251

Description

The declared routine acts as a template for calls to the function or procedure in DDL statements such as
CREATE TABLE, CREATE VIEW, and CREATE MODULE. The template allows Rdb to validate that the
routine is correctly named, is passed the correct number of parameters, and that those parameters are passed
compatible arguments. For functions, the returned data type is used to calculate data types for COMPUTED
BY, AUTOMATIC, and other stored value expressions.

Environment

You can use the DECLARE FUNCTION and DECLARE PROCEDURE statements:

In interactive SQL•
Embedded in host language programs to be precompiled•
As part of a procedure in a SQL module•
In dynamic SQL as a statement to be dynamically executed.•

Format

Oracle® Rdb for OpenVMS

8.2.9 New DECLARE Routine Statement 252

Usage Notes

If an additional DECLARE statement is executed with the same routine name, then it must be
identical to the existing definition.

•

The routine that is created using CREATE FUNCTION, CREATE PROCEDURE, or CREATE
MODULE statements must match exactly the number of parameters, the data types (domains can be
replaced with the base data types), passing mechanism (BY VALUE, BY REFERENCE, BY
LENGTH, BY DESCRIPTOR), and mode (IN, OUT and INOUT).

•

The DEFAULT clause on parameters must be specified so that the minimum and maximum parameter
counts can be calculated for the routine. However, this DEFAULT value is not used and may be
specified as NULL, i.e. a placeholder.

•

A declared routine remains part of the session until it is replaced by a CREATE FUNCTION,
CREATE PROCEDURE, or CREATE MODULE statement.
If a CREATE FUNCTION, CREATE PROCEDURE, or CREATE MODULE statement is rolled
back, then any declared routine it replaced is also eliminated. Therefore, a new DECLARE will be
required in such cases.

•

Oracle® Rdb for OpenVMS

8.2.9 New DECLARE Routine Statement 253

If the session is disconnected before a CREATE statement has defined the true routine body (stored or
external), then attempts to use the database objects which reference those routines will fail.
This is similar to the behavior observed after using DROP ... CASCADE. i.e. there are unresolved
references which must be corrected by creating those objects.

•

Tools such as SQL EXPORT and IMPORT and RMU Extract use the DECLARE routine facility to
allow forward references in generated database definition operations.
For RMU Extract, the Item=Forward_References qualifier must be used to enable the output of the
DECLARE statements. For SQL EXPORT, this is the default setting which can be disabled using the
NO FORWARD_REFERENCES clause with the EXPORT or IMPORT commands.

•

Example

Consider this simple definition of a domain and referencing external function.

SQL> create domain MONEY as integer (2);
SQL>
SQL> create function INTEREST_PAID
cont> (in :amt MONEY)
cont> returns MONEY;
cont> external
cont> language C
cont> parameter style GENERAL;
SQL>
SQL> alter domain MONEY
cont> add
cont> check (INTEREST_PAID (value) > 0)
cont> not deferrable;

Once the ALTER DOMAIN is completed, neither the function nor the domain can be defined before the
other. Here is an excerpt of the result of executing the output from the RMU Extract command.

SQL> create domain MONEY
cont> INTEGER (2)
cont> check((INTEREST_PAID(value) > 0))
cont> not deferrable;
%SQL−F−RTNNOTDEF, function or procedure INTEREST_PAID is not defined
SQL>
SQL> commit work;
SQL> create function INTEREST_PAID (
cont> in :AMT
cont> MONEY
cont> by reference)
cont> returns
cont> MONEY by value
cont> language SQL;
cont> external
cont> language C
cont> parameter style GENERAL
cont> deterministic
cont> called on null input
cont> ;
%SQL−F−NO_SUCH_FIELD, Domain MONEY does not exist in this database or schema
SQL> commit work;

This problem is avoided for RMU Extract by adding the Forward_References item to the command line:

$ RMU/EXTRACT/ITEM=(ALL,FORWARD_REFERENCES) databasename/OUTPUT=script.SQL

Oracle® Rdb for OpenVMS

8.2.9 New DECLARE Routine Statement 254

The script now contains a forward declaration of the function INTEREST_PAID so that execution of the
script can succeed.

SQL> declare function INTEREST_PAID (
cont> in :AMT
cont> INTEGER (2)
cont> by reference)
cont> returns
cont> INTEGER (2) by value
cont> ;
SQL>
SQL> create domain MONEY
cont> INTEGER (2)
cont> check((INTEREST_PAID(value) > 0))
cont> not deferrable;
SQL>
SQL> commit work;
SQL> create function INTEREST_PAID (
cont> in :AMT
cont> MONEY
cont> by reference)
cont> returns
cont> MONEY by value
cont> language SQL;
cont> external
cont> language C
cont> parameter style GENERAL
cont> deterministic
cont> called on null input
cont> ;
SQL> commit work;

8.2.10 New AUTO_INDEX Option Added for SET FLAGS

This release of Oracle Rdb includes a new AUTO_INDEX option for the SET FLAGS statement and
RDMS$SET_FLAGS logical. This option can be used to have CREATE TABLE and ALTER TABLE create
indices for any PRIMARY KEY, FOREIGN KEY or UNIQUE constraint added to the table.

Note

This feature is part of a prototyping facility and is not intended to replace database design
and management. Many example scripts, such as the PetStore demonstration for JDBC,
assume that adding constraints will also implicitly create indices for performance. In such
examples, simply include SET FLAGS 'AUTO_INDEX' in the script that creates the
database.

The following example shows actions of AUTO_INDEX:

SQL> set dialect 'SQL92';
SQL> set flags 'AUTO_INDEX,INDEX_STATS';
SQL> create table PERSON
cont> (employee_id integer primary key,
cont> manager_id integer references PERSON (employee_id),
cont> last_name char(30),
cont> first_name char(30),

Oracle® Rdb for OpenVMS

8.2.10 New AUTO_INDEX Option Added for SET FLAGS 255

cont> unique (last_name, first_name));
~Ai create index "PERSON_PRIMARY_EMPLOYEE_ID"
~Ai larea length is 430
~Ai storage area (default) larea=57
~Ai create sorted index, ikey_len=5
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=430 %fill=0
~Ai create index "PERSON_FOREIGN1"
~Ai larea length is 215
~Ai storage area is shared: larea=57
~Ai create sorted index, ikey_len=5
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=0 %fill=0
~Ai create index "PERSON_UNIQUE1"
~Ai larea length is 215
~Ai storage area is shared: larea=57
~Ai create sorted index, ikey_len=62
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=0 %fill=0
SQL>
SQL> show table (index) person
Information for table PERSON

Indexes on table PERSON:
PERSON_FOREIGN1 with column MANAGER_ID
 Duplicates are allowed
 Type is Sorted
 Key suffix compression is DISABLED

PERSON_PRIMARY_EMPLOYEE_ID with column EMPLOYEE_ID
 No Duplicates allowed
 Type is Sorted
 Key suffix compression is DISABLED
 Node size 430

PERSON_UNIQUE1 with column LAST_NAME
 and column FIRST_NAME
 Duplicates are allowed
 Type is Sorted
 Key suffix compression is DISABLED
SQL>

Usage Notes

All indices which are created for constraints are of type SORTED. If the database SYSTEM INDEX
default is SORTED RANKED then this same default is used by the AUTO_INDEX option.

•

If a suitable index already exists, then it will be used in preference to creating a new index.•
All indices are created in the DEFAULT storage area. There is no facility to add storage maps for
these indices during their creation.

•

The index is given the same name as the constraint for which it was created. When the constraint is
dropped, the index will remain and must be dropped manually. It is possible that the index is used by
multiple constraints.

•

Use the INDEX_STATS option with AUTO_INDEX to see a description of the indices which are
created.

•

Oracle® Rdb for OpenVMS

8.2.10 New AUTO_INDEX Option Added for SET FLAGS 256

8.3 Enhancements Provided in Oracle Rdb Release
7.1.0.2

8.3.1 Buffer Objects Enhancements

In Release 6.1, Oracle Rdb introduced minimal support for OpenVMS Fast I/O Buffer Objects and the Fast
I/O feature. Prior to Release 7.1, Oracle Rdb users who wanted to utilize Fast I/O could define the following
logical name to have the Oracle Rdb I/O data buffers turned into a buffer objects:

$ DEFINE RDM$BIND_BUFOBJ_ENABLED 1

This logical name is no longer used; new database parameters and logical names have been introduced to offer
more control over enabling buffer objects for various Oracle Rdb buffers.

A new command "RMU /SET BUFFER_OBJECT [/LOG] [/ENABLE=...] [/DISABLE=...] database" is
available to control, on a database basis, which database objects are to use the OpenVMS Fast I/O and Buffer
Objects features. This command accepts the "/ENABLE=(...)" and "/DISABLE=(...)" qualifiers. Specify the
keywords PAGE, AIJ, RUJ or ROOT to enable or disable buffer objects. If a keyword is specified in both the
"/ENABLE" and "/DISABLE" qualifiers, the "/ENABLE" qualifier overrides the "/DISABLE" qualifier and
the buffer object state is enabled for the specified object type.

Table 8−1 Buffer Object Control

Object Keyword Logical Name

Data pagesPAGE RDM$BIND_PAGE_BUFOBJ_ENABLED

AIJ output AIJ RDM$BIND_AIJ_BUFOBJ_ENABLED

RUJ RUJ RDM$BIND_RUJ_BUFOBJ_ENABLED

Root file ROOT RDM$BIND_ROOT_BUFOBJ_ENABLED

Note

If a logical is defined as "1" then the corresponding buffer will be created as an OpenVMS
buffer object.

The "RMU /SET BUFFER_OBJECT" command requires exclusive database access.

The following example demonstrates enabling ROOT buffer objects and disabling PAGE buffer objects. The
RMU /DUMP /HEADER command is used to validate the change.

$RMU /SET BUFFER_OBJECT /ENABLE=(ROOT) /DISABLE=(PAGE) MF_PERSONNEL
%RMU−I−MODIFIED, Buffer objects state modified
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery
$ RMU/DUMP/HEAD MF_PERSONNEL
 .
 .
 .
 − OpenVMS Alpha Buffer Objects are enabled for

8.3 Enhancements Provided in Oracle Rdb Release 7.1.0.2 257

 Root I/O Buffers
 .
 .
 .

Prior to Oracle Rdb 7.1, Fast I/O could not be used if the Oracle Rdb global buffers feature was enabled. This
restriction has been lifted. When the Very Large Memory (VLM) feature is not being used, buffer objects may
be enabled for global buffers.

SQL syntax for controlling these features on a database−wide basis is planned for a future release. As always,
care should be taken when utilizing the Fast I/O feature. Buffer objects are memory resident and thus will
reduce the amount of physical memory available to OpenVMS for other uses. Buffer object use requires that
the user be granted the VMS$BUFFER_OBJECT_USER rights identifier. The system parameter
MAXBOBMEM needs to be large enough to allow all buffer objects for all users to be created. For further
information regarding Fast I/O, consult the OpenVMS documentation.

8.3.2 RMU Support Added for New OpenVMS Tape Density
Values

Oracle Rdb RMU now supports the new OpenVMS tape density and compression values introduced in
OpenVMS V7.2−1. The values that can be specified are the same values as those documented by OpenVMS
for the VMS INITIALIZE and MOUNT commands as well as other VMS commands that allow tape density
and compression to be specified. The existing tape density values supported by the /DENSITY qualifier can
continue to be specified for versions of OpenVMS prior to OpenVMS V7.2−1, for OpenVMS tape device
drivers that have not been enhanced to use these new density values, and even for OpenVMS tape drivers that
have been enhanced to use the new density values. However, if possible, the new density values should be
specified for OpenVMS tape device drivers that accept the new density values since in some cases, especially
for newer tape drives and tape cartridges, the existing density values may not work as expected. This affects
all RMU commands that support the /DENSITY qualifier: RMU/BACKUP,
RMU/BACKUP/AFTER_JOURNAL and RMU/OPTIMIZE_AIJ. The new OpenVMS tape density and
compression values are sometimes referred to as "MTD" values (multiple tape density) or "MT3" (they
translate to internal VMS values that start with "MT3$K_" while the existing density values translate to
internal values that start with "MT$K_").

If the existing RMU tape density values are specified for OpenVMS tape device drivers that support the new
density values, they will be translated to the new density values if possible; otherwise a warning message will
be issued and the existing tape density values will be used since the OpenVMS tape driver that supports the
new density values should accept the existing density values in most cases. Similarly, if the new tape density
values are specified for VMS tape device drivers that do not support the new density values they will be
translated to the existing density values if possible; otherwise a warning message will be issued and the new
density value will be translated to the existing "DEFAULT" internal density value (MT$K_DEFAULT) since
the tape device driver does not support the new density values. RMU queries the tape device driver at the start
of the tape operation to determine if it supports the new density/compression values. If a density related error
such as:

%RMU−E−DENSITY, TAPE_DEVICE:[000000]DATABASE.BCK; does not support specified
density

or

%RMU−E−POSITERR, error positioning TAPE_DEVICE:

Oracle® Rdb for OpenVMS

8.3.2 RMU Support Added for New OpenVMS Tape Density Values 258

or

%RMU−E−BADDENSITY, The specified tape density is invalid for this device

is returned, we recommend changing the value specified with the /DENSITY qualifier to one of the new
density values for an OpenVMS tape device driver that accepts the new density values or to one of the
existing density values for an OpenVMS tape device driver that accepts the existing density values. Generally,
it is best to specify the new density values for tape device drivers that accept the new density values and the
existing density values for tape device drivers that accept the existing density values to be certain of achieving
the desired tape density and compression. The warning message output if an existing density value cannot be
translated to one of the new density values is:

%RMU_W_MTDSUPPORT, The specified density cannot be translated to an equivalent
 multiple tape density value

The warning message output if a new density value cannot be translated to one of the existing density values
and is translated to the "DEFAULT" density value is:

%RMU−W−NOMTDSUPPORT, The specified multiple tape density cannot be translated
to an equivalent tape density value

The default behavior if the /DENSITY qualifier is not specified is to use the current tape density the tape has
been set to by an OpenVMS command such as MOUNT or INITIALIZE.

The existing syntax can continue to be used for the existing density values.

/DENSITY = density_value

where density_value can be one of the following numeric values:

0
1
2
800
833
1250
1600
6250
10000
10625
39782
39872
40000
70000
79564
79744
80000
160000

For the existing values, compression is determined by the density value and is not specified. For the value to
be used for a particular tape drive and tape cartridge, we refer you to the OpenVMS documentation.

For the new values, the syntax to be used is:

/DENSITY = new_density_value

Oracle® Rdb for OpenVMS

8.3.2 RMU Support Added for New OpenVMS Tape Density Values 259

where new_density_value can be one of the following values:

DEFAULT
800
833
1600
6250
3480
3490E
TK50
TK70
TK85
TK86
TK87
TK88
TK89
QIC
8200
8500
8900
DLT8000
SDLT
DDS1
DDS2
DDS3
DDS4
AIT1
AIT2
AIT3
AIT4
COMPACTION
NOCOMPACTION

If the new density values and the existing density values are the same (800,833,1600,6250), the intended value
will be interpreted as a new value if the tape device driver accepts the new values and as an existing value if
the tape device driver only accepts existing values.

For the new values which accept tape compression, the following syntax can be used:

/DENSITY = (new_density_value,[NO]COMPACTION)

To be used with the second "COMPACTION" parameter, the new density value must be one of the following
new density values which accepts compression:

DEFAULT
3480
3490E
8200
8500
8900
TK87
TK88
TK89
DLT8000
SDLT
AIT1
AIT2
AIT3
AIT4

Oracle® Rdb for OpenVMS

8.3.2 RMU Support Added for New OpenVMS Tape Density Values 260

DDS1
DDS2
DDS3
DDS4

For the value to be used for a particular tape drive and cartridge, we refer you to the OpenVMS
documentation.

USAGE NOTES

If a density value is desired that is not supported by this syntax, use the VMS INITIALIZE and
MOUNT commands to set the tape density and do not specify the /DENSITY qualifier.

•

Please refer to the HP OpenVMS documentation for detailed information on these density values and
the tape drives and tape cartridges they should be used with.

•

The same density syntax used on the command line can be specified in the PLAN file for
PARALLEL RMU backup to tape.

•

EXAMPLES

The following example uses an existing density value.

$ RMU/BACKUP/DENSITY=1250/REWIND/LABEL=(LABEL1,LABEL2) MF_PERSONNEL −
TAPE1:MFP.BCK, TAPE2:

The following example uses a new density value with no compression.

$ RMU/BACKUP/DENSITY=TK89/REWIND/LABEL=(LABEL1,LABEL2) MF_PERSONNEL −
TAPE1:MFP.BCK, TAPE2:

The following example uses the same density value as above but calls for compression.

$ RMU/BACKUP/DENSITY=(TK89,COMPACTION)/REWIND/LABEL=(LABEL1,LABEL2) −
MF_PERSONNEL TAPE1:MFP.BCK, TAPE2:

8.3.3 Ability to Compress RMU/SHOW STATISTICS Output File
Added

A new keyword "COMPRESS" has been added to the list of keywords that can be used with the /OPTIONS
qualifier associated with the RMU/SHOW STATISTICS command. Use of this keyword will compress the
statistics records written to the output file if a /OUTPUT qualifier is used with the RMU/SHOW
STATISTICS command. While replaying the statistics, RMU/SHOW STATISTICS will determine if a record
was written using compression or not. If the record was written using compression, it will automatically be
decompressed.

If compression is used, the resultant binary file can be read only by RMU/SHOW STATISTICS. The format
and contents of a compressed file are not documented or accessible to other applications.

Oracle® Rdb for OpenVMS

8.3.3 Ability to Compress RMU/SHOW STATISTICS Output File Added 261

8.3.4 IEEE Floating Point Format for SQL Module Language and
Precompiled SQL

Bug 1339112

Support for IEEE floating point formats has been added to SQL Module Language and Precompiled SQL on
OpenVMS Alpha platforms (IEEE floating point format support is not available for VAX). There are two
IEEE floating point formats: single precision (S−Floating) and double precision (T−Floating). They are 32
and 64 bits in length, respectively. The OpenVMS names for these formats are S_FLOAT and T_FLOAT.

Note that Oracle Rdb always stores floating point numbers internally using the VAX 32−bit and 64−bit types
called F−Floating (F_FLOAT) and G−Floating (G_FLOAT), respectively. This means that when IEEE
formats are used in a host language program, Oracle Rdb converts back and forth between the VAX and IEEE
formats. There are differences in the number of available bits in the fraction and exponent between these
formats. Additionally, the IEEE formats have certain exponent values reserved for infinity values. These
differences can cause floating point overflow or underflow as well as rounding errors during the conversion
process. See Appendix A of the HP Portable Mathematics Library in the OpenVMS Operating System
documentation for data on the maximum and minimum values for VAX versus IEEE floating point formats.

A new qualifier has been added to the SQL$MOD and SQL$PRE commands which allows host language
IEEE 32−bit and 64−bit floating point variables to be used as host variables and parameters in programs
calling SQL Module Language procedures and/or containing precompiled SQL (including Dynamic SQL).
The format of the qualifier is as follows:

/FLOAT={D_FLOAT or G_FLOAT or IEEE_FLOAT}

The existing /[NO]G_FLOAT qualifier can continue to be used. The /G_FLOAT qualifier is equivalent to
/FLOAT=G_FLOAT and the /NOG_FLOAT qualifier is equivalent to /FLOAT=D_FLOAT.

The meaning of the /FLOAT and /[NO]G_FLOAT qualifiers with SQL$MOD and SQL$PRE closely parallels
that of the corresponding qualifiers for the language compilers wherever possible. The details of support vary
by language as described below.

8.3.4.1 SQL Module Language (SQL$MOD)

The /FLOAT and /[NO]G_FLOAT qualifiers determine the conversion that SQL Module Language performs
on SQL Module Language procedure parameters declared as single or double precision floating point SQL
datatypes. SQL floating point datatypes are FLOAT(n), REAL, and DOUBLE PRECISION. See Section 2.3
of the SQL Reference Manual for details. Internally to Rdb, single precision floating point types are
represented as F−Floating while double precision floating point types are represented as G−Floating. See
Table 3.2 in Section 3.4 of the SQL Reference Manual for more details.

By default, parameters declared as single or double precision floating point type are expected to be passed by
the calling host language program in F−Floating and G−Floating format, respectively. This is equivalent to
using a qualifier of /FLOAT=G_FLOAT or /G_FLOAT with the SQL$MOD command.

If the command line for SQL$MOD has /FLOAT=D_FLOAT (or /NOG_FLOAT), then the single and double
precision floating point parameters are expected to be in F−Floating and D−Floating format respectively. SQL
Module Language will convert the double precision parameters between D−Floating and G−Floating formats
for both input and output.

Oracle® Rdb for OpenVMS

8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL 262

If the command line for SQL$MOD has /FLOAT=IEEE_FLOAT, the single and double precision floating
point parameters are expected to be in IEEE S−Floating and IEEE T−Floating format, respectively. SQL
Module Language will convert between these formats and the internal F−Floating and G−Floating formats for
both input and output.

If a parameter of a SQL Module Language procedure is of a record type, any fields of the record which are of
floating point types follow the same rules as described above.

In the discussion of actual parameter types below, examples will refer to the following SQL Module
Language procedure which is assumed to yield a singleton select:

PROCEDURE GET_FLOATS (SQLCODE, REAL :P_FLOAT1, DOUBLE PRECISION :P_FLOAT2);
BEGIN
 SELECT MY_FLOAT1, MY_FLOAT2 INTO :P_FLOAT1, :P_FLOAT2 FROM A_TABLE
 WHERE KEY_VALUE = "1";
END;

The floating point formats of the host language program actual parameters must agree with the format
expected by the SQL Module Language actual parameter. (See Section 3.4 of the SQL Reference Manual for
information concerning actual and formal parameter agreement.)

The host language floating point formats are determined as follows.

Ada

The Ada compiler does not have a /FLOAT or /[NO]G_FLOAT qualifier. The formats of floating point data
elements are determined by the declaration of the variable used in the actual parameter. The STANDARD
package contains floating point datatypes the format of which is determined by the pragmas
FLOAT_REPRESENTATION and LONG_FLOAT. The SYSTEM package contains floating point types
which explicitly specify the floating point format associated with the type. These host variable formats and
equivalent SQL Module language declarations are detailed in the following table:

Table 8−2 Ada Declarations and Floating Point Formats

Ada Declaration Compatible SQL$MOD Declaration

pragma FLOAT_REPRESENTATION VAX_FLOATSQL$MOD/ADA/FLOAT=G_FLOAT − or −

SQL$MOD/ADA/FLOAT=D_FLOAT

... ...

FLOAT1 : STANDARD.FLOAT; REAL :P_FLOAT1 − or −

FLOAT(24) :P_FLOAT1

pragma FLOAT_REPRESENTATION VAX_FLOATSQL$MOD/ADA/FLOAT=G_FLOAT

pragma LONG_FLOAT G_FLOAT ...

...

FLOAT1 : STANDARD.LONG_FLOAT; DOUBLE_PRECISION :P_FLOAT1 − or −

FLOAT(53) :P_FLOAT1

pragma FLOAT_REPRESENTATION VAX_FLOATSQL$MOD/ADA/FLOAT=D_FLOAT

pragma LONG_FLOAT D_FLOAT ...

...

Oracle® Rdb for OpenVMS

8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL 263

FLOAT2 : STANDARD.LONG_FLOAT; DOUBLE_PRECISION :P_FLOAT2 − or −

FLOAT(53) :P_FLOAT2

... SQL$MOD/ADA/FLOAT=D_FLOAT

...

FLOAT1 : SYSTEM.F_FLOAT; REAL :P_FLOAT1 − or −

FLOAT(24) :P_FLOAT1

FLOAT2 : SYSTEM.D_FLOAT; DOUBLE_PRECISION :P_FLOAT2 − or −

FLOAT(53) :P_FLOAT2

... SQL$MOD/ADA/FLOAT=G_FLOAT

...

FLOAT1 : SYSTEM.F_FLOAT; REAL :P_FLOAT1 − or −

FLOAT(24) :P_FLOAT1

FLOAT2 : SYSTEM.G_FLOAT; DOUBLE_PRECISION :P_FLOAT2 − or −

FLOAT(53) :P_FLOAT2

... SQL$MOD/ADA/FLOAT=IEEE_FLOAT

...

FLOAT1 : SYSTEM.IEEE_SINGLE_FLOAT; REAL :P_FLOAT1 − or −

FLOAT(24) :P_FLOAT1

FLOAT2 : SYSTEM.IEEE_DOUBLE_FLOAT; DOUBLE_PRECISION :P_FLOAT2 − or −

FLOAT(53) :P_FLOAT2

See Table 3.3 in Section 3.4 of the SQL Reference Manual for more information on equivalency between
SQL and Ada data types.

The following example shows an Ada code fragment which is compatible with the GET_FLOATS sample
procedure when the SQL Module Language program has been compiled with /FLOAT=IEEE_FLOAT:

procedure GET_FLOATS (
 SQLCODE : out INTEGER;
 P_FLOAT1 : out IEEE_SINGLE_FLOAT;
 P_FLOAT2: out IEEE_DOUBLE_FLOAT
);
pragma INTERFACE (NONADA, GET_FLOATS);
SQLCODE : INTEGER;
FLOAT1 : SYSTEM.IEEE_SINGLE_FLOAT;
FLOAT2 : SYSTEM.IEEE_DOUBLE_FLOAT;
...
GET_FLOATS(SQLCODE, FLOAT1, FLOAT2);

BASIC

BASIC provides a /REAL_SIZE qualifier which can be used to specify not only the size but the format of
floating point variables declared using the REAL keyword. The relevant values for this qualifier for IEEE
floating point formats are SFLOAT and TFLOAT. These values specify that REAL variables are to be of type
S−Floating or T−Floating, respectively. BASIC also provides the OPTION command which allows the size
and format of a REAL to be specified in a more local scope.

Additionally, BASIC has native datatypes (SFLOAT and TFLOAT) which explicitly specify S−Floating and

Oracle® Rdb for OpenVMS

8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL 264

T−Floating variables, respectively. See Table 3.4 in Section 3.4 of the SQL Reference Manual for more
information on equivalency between SQL and BASIC data types.

The following example shows a BASIC code fragment which is compatible with the GET_FLOATS sample
procedure:

EXTERNAL GET_FLOATS(LONG, SFLOAT, TFLOAT)
DECLARE LONG SQLCODE
DECLARE SFLOAT FLOAT1
DECLARE TFLOAT FLOAT2
...
CALL GET_FLOATS(SQLCODE, FLOAT1, FLOAT2)

C

C has /FLOAT and /[NO]G_FLOAT qualifiers which work identically to those for SQL$MOD (except the
default may be different). That is, the format of the floating point variables in the C program is determined by
the qualifier. C has native types of "float" and "double" which are 32−bit and 64−bit floating point numbers,
respectively. See Table 3.5 in Section 3.4 of the SQL Reference Manual for more information on equivalency
between SQL and C data types.

The following example shows a C code fragment which is compatible with the GET_FLOATS sample
procedure provided that both the C module and the SQL Module Language program were compiled with the
same setting of the /FLOAT or /[NO]G_FLOAT qualifier:

extern void GET_FLOATS (
 long *SQLCODE,
 float *P_FLOAT1,
 double *P_FLOAT2
);
long SQLCODE;
float float1;
double float2;
...
GET_FLOATS(&SQLCODE, &float1, &float2);

COBOL

On the Alpha platform, COBOL has a /FLOAT qualifier with the same options as SQL$MOD (except the
default is D_FLOAT). There is no /[NO]G_FLOAT qualifier for COBOL. The /FLOAT qualifier works
identically to that of SQL$MOD. That is, the format of the floating point variables in the COBOL program is
determined by the qualifier. COBOL has native types of COMP−1 and COMP−2 which are 32−bit and 64−bit
floating point numbers, respectively. See Table 3.6 in Section 3.4 of the SQL Reference Manual for more
information on equivalency between SQL and COBOL data types.

The following example shows a COBOL code fragment which is compatible with the GET_FLOATS sample
procedure provided that both the COBOL program and the SQL Module Language program were compiled
with the same setting of the /FLOAT qualifier:

DATA DIVISION.
WORKING−STORAGE SECTION.
01 SQLCODE PIC S9(9) USAGE COMP.
01 FLOAT1 COMP−1.
01 FLOAT2 COMP−2.
...

Oracle® Rdb for OpenVMS

8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL 265

CALL "GET_FLOATS" USING SQLCODE, FLOAT1, FLOAT2.

FORTRAN

FORTRAN has /FLOAT and /[NO]G_FLOAT qualifiers which work identically to those for SQL$MOD
(except the default may be different). That is, the format of the floating point variables in the FORTRAN
program is determined by the qualifier. FORTRAN has native types of "real" and "real*4" which are 32−bit
floating point numbers and "double precision" and "real*8" which are 64−bit floating point numbers. See
Table 3.7 in Section 3.4 of the SQL Reference Manual for more information on equivalency between SQL
and FORTRAN data types.

The following example shows a FORTRAN code fragment which is compatible with the GET_FLOATS
sample procedure provided that both the FORTRAN module and the SQL Module Language program were
compiled with the same setting of the /FLOAT or /[NO]G_FLOAT qualifier:

 integer*4 SQLCODE
 real*4 float1
 real*8 float2
 ...
 CALL GET_FLOATS(SQLCODE, float1, float2)

Pascal

Pascal has /FLOAT and /[NO]G_FLOAT qualifiers which work similarly to those for SQL$MOD (except the
default may be different). That is, the format of floating point variables of certain data types in the Pascal
program is determined by the qualifier. The Pascal native data types affected by the qualifiers are REAL,
SINGLE and DOUBLE. The first two of these are 32−bit floating point numbers and the final one is a 64−bit
floating point number. Pascal also has an attribute called FLOAT which can be used to affect the format of
floating point similarly to the /FLOAT qualifier but with a more local scope. Specifically, IEEE floating point
format can be specified by using the IEEE_FLOAT keyword with the FLOAT Attribute.

In addition, Pascal has several format−specific floating point data types which specify a particular format
regardless of the qualifier settings. The format−specific data types include S_FLOAT and T_FLOAT which
are IEEE 32−bit and 64−bit floating point numbers, respectively. (Note that this change also includes support
for the Pascal format−specific datatypes of F_FLOAT, D_FLOAT, and G_FLOAT.) See Table 3.8 in Section
3.4 of the SQL Reference Manual for more information on equivalency between SQL and Pascal data types.

The following example shows a Pascal code fragment which is compatible with the GET_FLOATS sample
procedure when the SQL Module Language program was compiled with /FLOAT=IEEE_FLOATING:

 sqlcode : INTEGER;
 float1 : S_FLOAT;
 float2 : T_FLOAT:
 PROCEDURE GET_FLOATS
 (VAR SQLCODE : INTEGER;
 VAR FLOAT_1 : S_FLOAT;
 VAR FLOAT_2 : T_FLOAT);
 EXTERNAL;
 ...
 GET_FLOATS(sqlcode, float1, float2)

PL/I

Oracle® Rdb for OpenVMS

8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL 266

PL/I has /FLOAT and /[NO]G_FLOAT qualifiers which work identically to those for SQL$MOD (except the
default may be different). That is, the format of the floating point variables in the PL/I program is determined
by the qualifier. PL/I has a native type of FLOAT which can be a 32−bit or 64−bit floating point number
depending on the size specification. See Table 3.9 in Section 3.4 of the SQL Reference Manual for more
information on equivalency between SQL and PL/I types.

The following example shows a PL/I code fragment which is compatible with the GET_FLOATS sample
procedure provided that both the PL/I module and the SQL Module Language program were compiled with
the same setting of the /FLOAT or /[NO]G_FLOAT qualifier:

DECLARE GET_FLOATS EXTERNAL ENTRY (
 ANY REFERENCE, ANY REFERENCE, ANY REFERENCE);
DECLARE SFLOAT FLOAT(24) BINARY,
 TFLOAT FLOAT(53) BINARY,
 SQLCODE BIN FIXED(31);
...
CALL GET_FLOATS(SQLCODE, SFLOAT, TFLOAT);

8.3.4.2 Precompiled SQL (SQL$PRE)

The SQL Precompiler translates embedded SQL into host language declarations and procedure calls. In
addition, it generates the procedures behind the procedure calls. The /FLOAT and /[NO]G_FLOAT qualifiers
for SQL$PRE determine the floating point format that SQL$PRE assumes for host language variables and,
hence, determines the conversions that will be made internal to the generated SQL procedures. When
SQL$PRE calls the host language compiler to process the precompiled program, it passes an equivalent
qualifier to its /FLOAT or /[NO]G_FLOAT qualifier where supported by the host language. This means that,
to the extent that the floating point format of host language variables is determined by a /FLOAT or
/[NO]G_FLOAT qualifier, the floating point formats of the host language variables and the parameters of
procedure calls generated by SQL$PRE are guaranteed to be compatible. When the host language provides a
type which explicitly declares the floating point format of the an individual variable, SQL$PRE uses that
information to determine the conversion needed regardless of the setting of the /FLOAT or /[NO]G_FLOAT
qualifier.

The SQL Precompiler's default floating point format for single or double precision floating point types is
F−Floating and G−Floating format, respectively. This is equivalent to using a qualifier of
/FLOAT=G_FLOAT or /G_FLOAT with the SQL$PRE command.

If a parameter of a SQL Module Language procedure is of a record type, any fields of the record which are of
floating point types follow the same rules as described above.

There are a few cases where a host language provides mechanisms for specifying floating point format which
are not recognized by SQL$PRE. In these cases, it is the developer's responsibility to ensure that the format is
what SQL$PRE expects. These cases are described in the host language−specific sections that follow. In these
sections, selects will be shown from a table defined as follows:

CREATE TABLE TESTTBL (
 KEYFIELD CHAR(10) PRIMARY KEY,
 FLOAT1 REAL,
 FLOAT2 DOUBLE PRECISION);

Ada

Oracle® Rdb for OpenVMS

8.3.4.2 Precompiled SQL (SQL$PRE) 267

Refer to Section 4.5.2 of the SQL Language Reference Manual for information about supported Ada floating
point variable declarations. SQL$PRE now supports the format−explicit types IEEE_SINGLE_FLOAT and
IEEE_DOUBLE_FLOAT in package SYSTEM in addition to the package SYSTEM floating point types
documented in the SQL Reference Manual. These newly supported types correspond to 32−bit and 64−bit
IEEE floating point numbers, respectively.

In addition, the Ada pragma FLOAT REPRESENTATION can be set to IEEE_FLOAT to override the default
formats of the intrinsic Ada type FLOAT as well as the floating point types in packages STANDARD and
SQL_STANDARD. If IEEE floating point format is specified using the pragma, a
/FLOAT=IEEE_FLOATING qualifier is required for the SQL$PRE command.

Note: SQL$PRE will issue a warning (%SQL−W−NOFLOAT) if you use a /FLOAT qualifier with an /ADA
qualifier because the Ada command does not have a /FLOAT qualifier. But if you use a pragma FLOAT
REPRESENTATION to override the default floating point formats, you must use the /FLOAT qualifier to let
SQL$PRE know about this floating point format since it does not recognize the pragma. Simply ignore the
warning. In addition to supporting IEEE formats, SQL$PRE will now allow the default G_FLOAT format for
64−bit floating point types to be overridden using a combination of the pragma FLOAT REPRESENTATION
specifying VAX_FLOAT and the pragma LONG FLOAT specifying D_FLOAT. To use this combination,
specify a SQL$PRE qualifier of /FLOAT=D_FLOAT.

The following example shows an Ada program with embedded SQL that will work correctly with
SQL$PRE/ADA/FLOAT=IEEE:

PRAGMA FLOAT REPRESENTATION IEEE_FLOAT;
WITH SYSTEM; USE SYSTEM;
WITH STANDARD; USE STANDARD;
WITH SQL_STANDARD; USE SQL_STANDARD;
...
PROCEDURE TESTIT IS
EXEC SQL BEGIN DECLARE SECTION;
KEYFIELD : STRING(1..10);
FLOATER : LONG_FLOAT; −− package STANDARD
SQLFLOATER : REAL; −− package SQL_STANDARD
GFLOATER : G_FLOAT; −− package SYSTEM
SFLOATER : IEEE_SINGLE_FLOAT; −− package SYSTEM
TFLOATER : IEEE_DOUBLE_FLOAT; −− package SYSTEM
EXEC SQL END DECLARE SECTION;
...
BEGIN
...
KEYFIELD := "1.0 ";
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :SQLFLOATER, :GFLOATER
 WHERE KEYFIELD = :KEYFIELD;
...
KEYFIELD := "2.0 ";
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :SFLOATER, :TFLOATER
 WHERE KEYFIELD = "KEYFIELD;
...
KEYFIELD := "3.0 ";
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :FLOATER, TFLOATER
 WHERE KEYFIELD = KEYFIELD;

BASIC

The SQL Precompiler does not support BASIC.

Oracle® Rdb for OpenVMS

8.3.4.2 Precompiled SQL (SQL$PRE) 268

C, COBOL, FORTRAN, PL/I

The compilers for these languages have /FLOAT and /[NO]G_FLOAT qualifiers which are totally analogous
to those of SQL$PRE. Consequently, programs which contain embedded SQL can simply be recompiled
using /FLOAT=IEEE_FLOATING and will link and run with other object modules which have been
compiled with /FLOAT=IEEE_FLOATING. Refer to Section 4.5.3 of the SQL Language Reference Manual
for information about supported C floating point variable declarations. Refer to Section 4.5.4 of the SQL
Language Reference Manual for information about supported COBOL floating point variable declarations.
Refer to Section 4.5.5 of the SQL Language Reference Manual for information about supported FORTRAN
floating point variable declarations. Refer to Section 4.5.7 of the SQL Language Reference Manual for
information about supported PL/I floating point variable declarations.

Pascal

The Pascal compiler has /FLOAT and /[NO]G_FLOAT qualifiers which are totally analogous to those of
SQL$PRE. The qualifiers affect all the Pascal floating point datatypes which don't explicitly imply a floating
point qualifier. These Pascal datatypes are REAL, SINGLE, and DOUBLE. Refer to Section 4.5.6 of the SQL
Language Reference Manual for information about supported Pascal floating point datatypes. Programs using
these datatypes can simply be recompiled with /FLOAT=IEEE_FLOATING and will link and run with other
object modules which have been compiled with /FLOAT=IEEE_FLOATING. (Note however that SQL$PRE
does not support the FLOAT attribute.)

In addition, SQL$PRE now supports the Pascal floating point datatypes which explicitly specify the floating
point format. These newly supported types are F_FLOAT, D_FLOAT, G_FLOAT, S_FLOAT, and
T_FLOAT. The first three use the VAX formats with the same name while the last two are IEEE 32−bit and
64−bit floating point formats, respectively. When SQL$PRE compiles programs that contain variables
declared with any of these datatypes, it provides the appropriate conversion regardless of the value of the
/FLOAT qualifier.

The following example illustrates a Pascal program using variables with various floating point formats. In this
example, the value of the /FLOAT qualifier is not important internally to the program and is only relevant if
the resulting module must pass floating point parameters to or from some external module.

PROGRAM TEST_PASCAL (INPUT,OUTPUT)
EXEC SQL INCLUDE SQLCA;
VAR
KEYFIELD : PACKED ARRAY [1..10] OF CHAR;
PAS_TFLOAT : T_FLOAT;
PAS_SFLOAT : S_FLOAT;
PAS_REAL : REAL;
PAS_DOUBLE : DOUBLE;
PAS_GFLOAT : G_FLOAT;
PAS_FFLOAT : F_FLOAT;
PAS_DFLOAT : D_FLOAT;
BEGIN
...
KEYFIELD := '1.0';
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :PAS_SFLOAT, :PAS_TFLOAT
 WHERE KEYFIELD = :KEYFIELD;
...
KEYFIELD := '2.0';
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :PAS_REAL, :PAS_GFLOAT
 WHERE KEYFIELD = :KEYFIELD;
...
KEYFIELD := '3.0';

Oracle® Rdb for OpenVMS

8.3.4.2 Precompiled SQL (SQL$PRE) 269

EXEC SQL SELECT FLOAT1, FLOAT2 INTO :PAS_FFLOAT, :PAS_DOUBLE
 WHERE KEYFIELD = :KEYFIELD;
...
KEYFIELD := '4.0';
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :PAS_DFLOAT, :PAS_TFLOAT
 WHERE KEYFIELD = :KEYFIELD;
...

8.3.4.3 Use of the Dynamic Descriptor Areas (SQLDA and SQLDA2)

Dynamic SQL can now pass floating point parameters in IEEE formats using the SQLDA and SQLDA2. See
Appendix D of the SQL Reference Manual for information on using the SQLDA including which languages
support it. The floating point format that SQL$PRE assumes is determined by the value of the /FLOAT or
/[NO]G_FLOAT qualifier. It is the developer's responsibility to provide a pointer to a variable of the
appropriate type according to the rules in the sections above. The following example illustrates using SQLDA
with an Ada program processed by the SQL Precompiler with /FLOAT=IEEE.

PRAGMA FLOAT REPRESENTATION IEEE_FLOAT;
WITH SYSTEM; USE SYSTEM;
WITH STANDARD; USE STANDARD;
...
PROCEDURE TESTIT IS
EXEC SQL BEGIN DECLARE SECTION;
FLOATER : FLOAT; −− package STANDARD
TFLOATER : IEEE_DOUBLE_FLOAT; −− package SYSTEM
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
...
BEGIN
SQLDA := NEW SQLDA_RECORD;
SQLDA.SQLN := 255;
...
EXEC SQL PREPARE the_stmt FROM
 'select float1, float2 from testtbl where keyfield = ''10000''';
EXEC SQL DESCRIBE the_stmt SELECT LIST INTO SQLDA;
SQLDA.SQLVAR(1).SQLDATA := FLOATER'ADDRESS;
SQLDA.SQLVAR(2).SQLDATA := TFLOATER'ADDRESS;
EXEC SQL DECLARE the_cursor CURSOR FOR the_stmt;
EXEC SQL OPEN the_cursor;
EXEC SQL FETCH the_cursor USING DESCRIPTOR sqlda;
EXEC SQL CLOSE the_cursor;

8.3.4.4 Use of Common Data Dictionary (CDD)

Both SQL Module Language and Precompiled SQL allow field and record definitions to be imported from a
CDD repository. CDD provides various floating point datatypes which explicitly specify the various VAX
floating point formats. However no IEEE floating point format datatypes are provided. Consequently, the
ability to use CDD fields of floating point types and CDD records containing floating point fields is very
limited when IEEE floating point formats are used.

When using a /FLOAT=IEEE_FLOATING qualifier, CDD records and fields with floating point types can
only be included with the combination of C and embedded SQL. In this case, the floating point format
specified in the CDD repository definition is simply ignored by both the precompiler and the C compiler and

Oracle® Rdb for OpenVMS

8.3.4.3 Use of the Dynamic Descriptor Areas (SQLDA and SQLDA2) 270

the floating point format is determined by the value of the /FLOAT or /[NO]G_FLOAT qualifier.

8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW
STATISTICS User Defined Events

Bug 2156905

RMU/SHOW STATISTICS user defined events gives you the ability to have a user defined command
procedure/program be invoked when the event is triggered. The parameters used for invoking this
procedure/program contain certain information about the event. The parameter P2 holds the name of the
statistic on which the event is based.

If a user is monitoring several databases for the same statistic and has events defined for all the databases, the
user would not know on which database the event got triggered. To address this problem, the
INCLUDE_DB_NAME attribute has been added. If this attribute is set to "1", the parameter P2 will hold both
statistic name and database name. It will be of the form "statistics name" for "database name". If the database
name is not needed, the INCLUDE_DB_NAME attribute can be set to "0" or not be included in the event
description. By default, INCLUDE_DB_NAME has a value of "0".

The following are examples of events defined with the INCLUDE_DB_NAME attribute.

EVENT_DESCRIPTION="ENABLE 'transactions' \
MAX_CUR_RATE \
INITIAL 3 \
EVERY 1 \
LIMIT 0 \
INCLUDE_DB_NAME 1 \
INVOKE DB";

EVENT_DESCRIPTION="ENABLE 'transactions' \
MAX_CUR_RATE \
INITIAL 3 \
EVERY 1 \
LIMIT 0 \
INCLUDE_DB_NAME 0 \
INVOKE DB";

The INCLUDE_DB_NAME attribute is available in Oracle Rdb Release 7.1.0.2.

8.3.6 New ALTER OUTLINE Statement

This release of Oracle Rdb 7.1 includes an ALTER OUTLINE and a COMMENT ON OUTLINE statement.

You can use the ALTER OUTLINE statement:

In interactive SQL•
Embedded in host language programs•
As part of a procedure in an SQL module•
In dynamic SQL as a statement to be dynamically executed•

FORMAT

Oracle® Rdb for OpenVMS

8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW STATISTICS User Defined Events 271

USAGE NOTES

The outline name can be prefixed with a database alias name. For example:

SQL> attach 'ALIAS db1 FILENAME mschema_db';
SQL> alter outline db1.SHOW_TABLES_QUERY
cont> comment is 'used to select SHOW_TAB_INDEX_01';

In a multischema database, the name can also include a schema name and catalog name.

•

The COMPILE option can be applied to query outlines that have been made invalid by DROP
TABLE or DROP INDEX. If the tables and indices have been recreated then the query outline will be
made valid again (i.e. once re−validated the optimizer will try to use that query outline).
Note: there is a possibility that the query outline, although marked valid, will not be used because of
changes in the index definition. There is too little information stored with the query outline to perform
a complete consistency check. If possible, queries using this outline should be run to verify correct
index and table usage.
If the query outline is currently valid then this clause is ignored by Rdb.

•

MOVE TO is valid only for multischema databases. You must be attached explicitly or implicitly
with the MULTISCHEMA IS ON clause. The MOVE TO clause can be used to move the query
outline to a different catalog and schema. An error will be raised if this clause is specified in a
non−multischema environment.
The target catalog and schema must exist in this database.

•

The RENAME TO clause can be used to change the name of the outline. The new name must not
already exist in the database.
If RENAME TO is used in a multischema database attached with MULTISCHEMA IS ON, then only
the multischema name is modified not the STORED NAME of the object. To change the STORED
NAME of the query outline, you must attach to the database explicitly with the MULTISCHEMA IS
OFF clause (see the example below). Please note that the STORED NAME for the query outline may
have been generated by Rdb.
Note that any queries using the OPTIMIZE USING clause will also need to be changed to reference
this new outline name.

•

Oracle® Rdb for OpenVMS

8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW STATISTICS User Defined Events 272

The COMMENT IS clause can be used to modify the comment stored with the query outline. The
COMMENT ON statement is identical in function to the ALTER OUTLINE ... COMMENT IS
clause.

•

EXAMPLES

Example 1: Changing the comment on a query outline.

SQL> alter outline show_tables
cont> comment is 'show the tables query'
cont> / 'derived from a stored procedure';
SQL> show outline show_tables
 SHOW_TABLES
 Comment: show the tables query
 derived from a stored procedure
 Source:
−− Rdb Generated Outline : 8−FEB−2002 16:17
create outline SHOW_TABLES
id '4D5B5CC5B46C6DD21B0E1999C0EB8BF3'
mode 0
as (
 query (
−− For loop
 subquery (
 RDB$RELATIONS 0 access path index RDB$REL_REL_NAME_NDX
)
)
)
compliance optional ;

Example 2: Using the alternate COMMENT ON syntax to change the comment

SQL> comment on outline show_tables
cont> is 'show the tables query'
cont> / 'derived from the stored procedure'
cont> / 'SHOW_TABLES';

Example 3: Changing the name of a query outline.

SQL> alter outline show_tables
cont> rename to show_the_tables;
SQL> show outline show_the_tables
 SHOW_THE_TABLES
 Comment: show the tables query
 derived from the stored procedure
 testing new COMMENT ON OUTLINE
 Source:
−− Rdb Generated Outline : 8−FEB−2002 16:17
create outline SHOW_THE_TABLES
id '4D5B5CC5B46C6DD21B0E1999C0EB8BF3'
mode 0
as (
 query (
−− For loop
 subquery (
 RDB$RELATIONS 0 access path index RDB$REL_REL_NAME_NDX
)
)

Oracle® Rdb for OpenVMS

8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW STATISTICS User Defined Events 273

)
compliance optional ;

Example 4: This example shows setting a query outline valid after a DROP INDEX.

First, our stored procedure is executed with the STRATEGY flag defined so we can see that it is using a query
outline named MY_OUTLINE.

SQL> set flags 'strategy';
SQL> call my_procedure();
~S: Outline "MY_OUTLINE" used
Aggregate Conjunct Index only retrieval of relation MY_TABLE
 Index name MY_INDEX [1:1]

Now the index that was used by the query (and referenced by the query outline) is dropped. This causes the
query outline to be set invalid (as shown by using the WARN_INVALID flag). The query now uses sequential
access strategy when the stored procedure is executed.

SQL> set flags 'warn_invalid';
SQL> drop index my_index;
~Xw: Outline "MY_OUTLINE" marked invalid (index "MY_INDEX" dropped)
SQL>
SQL> set flags 'strategy';
SQL> call my_procedure();
~S: Outline "MY_OUTLINE" is invalid and can not be used
Aggregate Conjunct Get
Retrieval sequentially of relation MY_TABLE
SQL> show outline my_outline
 MY_OUTLINE
 Outline has been marked invalid
...

The ALTER OUTLINE ... COMPILE clause is now used to make the outline valid. The first attempt reports
that the index is missing. After the index is recreated, the COMPILE succeeds. Calling the stored procedure
now uses this query outline.

SQL> alter outline my_outline compile;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−INDNOTEXI, index MY_INDEX does not exist in this database
SQL> −− must redefine the index
SQL> create index my_index on my_table (b desc);
SQL> alter outline my_outline compile;
SQL> call my_procedure();
~S: Outline "MY_OUTLINE" used
Aggregate Conjunct Index only retrieval of relation MY_TABLE
 Index name MY_INDEX [1:1]
SQL>

Example 5: Changing the STORED NAME of a query outline in a multischema database.

This example shows how to change the STORED NAME of a multischema outline. Here we explicitly
provide the STORED NAME, however, the same technique can be used when SQL generates a unique
STORED NAME for the outline.

SQL> attach 'filename mschema';
SQL> create outline SHOW_TABLE
cont> stored name SHOW_TABLE_01

Oracle® Rdb for OpenVMS

8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW STATISTICS User Defined Events 274

cont> on procedure name SHOW_TABLES;
SQL> commit;
SQL> disconnect all;
SQL> attach 'filename mschema MULTISCHEMA IS OFF';
SQL> alter outline SHOW_TABLE_01
cont> rename to SHOW_THE_TABLES;
SQL> commit;

8.3.7 DROP Statement Now Includes IF EXISTS Clause

The following DROP statements now support a new IF EXISTS option which allows the DROP to succeed
even if the named object is not in the database.

DROP CATALOG•
DROP COLLATING SEQUENCE•
DROP CONSTRAINT•
DROP DOMAIN•
DROP FUNCTION•
DROP INDEX•
DROP MODULE•
DROP OUTLINE•
DROP PROCEDURE•
DROP PROFILE•
DROP SEQUENCE•
DROP SCHEMA•
DROP STORAGE MAP•
DROP SYNONYM•
DROP TABLE•
DROP TRIGGER•
DROP USER•
DROP ROLE•
DROP VIEW•

Usage Notes

No error is reported if the referenced object does not exist in the database. Use IF EXISTS in SQL
command scripts to avoid unwanted error messages.

•

For multischema databases, the IF EXISTS clause may not operate as expected because the object is
internally deleted using the STORED NAME which may be different from that specified by the
DROP statement. Currently, the IF EXISTS clause assumes that the multischema name and the stored
name are identical.

•

Example: Adding New Definitions to a Database

When updating metadata definitions using a predefined SQL script, it is sometimes required to remove objects
that may not be present in all databases being maintained. Adding a DROP VIEW, for instance, will result in
an error as shown here.

SQL> drop view CURRENT_INFO;
%SQL−F−RELNOTDEF, Table CURRENT_INFO is not defined in database or schema
SQL> create view CURRENT_INFO

Oracle® Rdb for OpenVMS

8.3.7 DROP Statement Now Includes IF EXISTS Clause 275

cont> ...etc...

By using the IF EXISTS clause, the error message is suppressed and makes for a less confusing execution of
the maintenance script.

SQL> drop view CURRENT_INFO if exists;
SQL> create view CURRENT_INFO
cont> ...etc...

8.3.8 New EXCEPT, INTERSECT and MINUS Operators

This release of Oracle Rdb adds three new operators to the select expression syntax. The new operators,
EXCEPT, INTERSECT and MINUS, are all forms of select table merge operations.

FORMAT

ARGUMENTS

EXCEPT
EXCEPT DISTINCT
The EXCEPT DISTINCT is used to create a result table from the first select expression except for
those row values that also occur in the second select expression.
DISTINCT is the default so EXCEPT and EXCEPT DISTINCT are identical operations. EXCEPT
conforms to the ANSI and ISO SQL:1999 Database Language Standard.

•

Oracle® Rdb for OpenVMS

8.3.8 New EXCEPT, INTERSECT and MINUS Operators 276

Note

EXCEPT is not commutative. That is, A EXCEPT B may result in a different set of
rows from B EXCEPT A. This is demonstrated by the examples below.

INTERSECT
INTERSECT DISTINCT
The INTERSECT DISTINCT operator is used to create a result table from the first select expression
of those row values that also occur in the second select expression.
DISTINCT is the default so INTERSECT and INTERSECT DISTINCT are identical operations.
INTERSECT conforms to the ANSI and ISO SQL:1999 Database Language Standard.

Note

In general INTERSECT is commutative. That is, A INTERSECT B results in the
same set of rows from B INTERSECT A. This is demonstrated by the examples
below. However, care should be taken when using LIMIT TO within the different
branches of the INTERSECT as this will make the result non−deterministic
because of different solution strategies employed by the Rdb optimizer.

•

MINUS
The MINUS operator is a synonym for the EXCEPT DISTINCT operator and is provided for
language compatibility with the Oracle RDBMS SQL language.

•

UNION
UNION ALL
UNION DISTINCT
Please refer to the existing Rdb documentation for information on the UNION operator.

•

CORRESPONDING
The UNION, EXCEPT, MINUS, and INTERSECT operators can be followed by the keyword
CORRESPONDING. This causes the two select lists of the select−merge−clause to be compared by
name. Only those column names which appear in both lists are retained for the resulting query table.
The name is either the column name or the name provided by the AS clause. If there are no names in
common, or a column name appears more than once in a select list, then an error is reported.

•

USAGE NOTES

The EXCEPT DISTINCT operator can be rewritten to use the NOT ANY predicate. In fact, the Rdb
server currently implements EXCEPT DISTINCT in this way. Consider this example:

SQL> select manager_id from departments
cont> except distinct
cont> select employee_id from employees;

This query could be rewritten as:

SQL> select manager_id
cont> from departments d
cont> where not exists (select *
cont> from employees e
cont> where e.employee_id = d.manager_id

•

Oracle® Rdb for OpenVMS

8.3.8 New EXCEPT, INTERSECT and MINUS Operators 277

cont> or (e.employee_id is null
cont> and d.manager_id is null));

As you can see, even for this simple query, the EXCEPT format is easier to read. As the number of
columns selected increases so does the complexity of the NOT EXISTS subquery.
The INTERSECT DISTINCT operator can be rewritten to use the EXISTS predicate. In fact, the Rdb
server currently implements INTERSECT DISTINCT in this way. Consider this example which
displays all managers who are also employees:

SQL> select manager_id from departments
cont> intersect distinct
cont> select employee_id from employees;

This query could be rewritten as:

SQL> select manager_id
cont> from departments d
cont> where exists (select *
cont> from employees e
cont> where e.employee_id = d.manager_id
cont> or (e.employee_id is null
cont> and d.manager_id is null));

As you can see, even for this simple query, the INTERSECT format is easier to read. As the number
of columns selected increases so does the complexity of the EXISTS subquery.

•

For both EXCEPT and INTERSECT, all duplicate rows are eliminated. For the purposes of these
operators, a row is considered a duplicate if each value in the first select list is equal to the matching
column in the second select list, or if both these columns are NULL.
The duplicate matching semantics can be clearly seen in the rewritten queries which use NOT
EXISTS and EXISTS.

•

EXAMPLES

The following examples show the new clauses in use.

Example 1: Using CORRESPONDING as a Shorthand for the Select List

This example derives results from tables with some column names in common. Here the table
RETIRED_EMPLOYEES contains a subset of the columns from EMPLOYEES (EMPLOYEE_ID and
LAST_NAME) as well as some new columns to describe the retired employee (e.g. RETIRE_DATE).
CORRESPONDING is used to match the common column names and produce this report.

SQL> select *, 'retired' as status from RETIRED_EMPLOYEES
cont> union corresponding
cont> select *, 'working' as status from EMPLOYEES e
cont> order by status;
 EMPLOYEE_ID LAST_NAME STATUS
 00207 Babbin retired
 00173 Bartlett retired
 ...etc...

Oracle® Rdb for OpenVMS

8.3.8 New EXCEPT, INTERSECT and MINUS Operators 278

Example 2: Changing a Result Name by Applying the AS Clause

This example shows the use of the AS clause to name the AVG statistical expression the same in each part of
the UNION clause. CORRESPONDING will align these two columns. Without the AS clause, these column
expressions would have been eliminated from the UNION result table.

SQL> select pnum,
cont> avg(weight) as AVG edit using 'ZZZZ99.99'
cont> from p
cont> group by pnum
cont> union corresponding
cont> select pnum,
cont> avg(qty) as AVG
cont> from spj
cont> group by pnum;
 PNUM AVG
 P1 12.00
 P1 333.33
 P2 17.00
 P2 150.00
 P3 17.00
 P3 388.89
 P4 14.00
 P4 650.00
 P5 12.00
 P5 450.00
 P6 19.00
 P6 325.00
12 rows selected
SQL>

Example 3: EXCEPT DISTINCT Operator

Here we use UNION DISTINCT to derive the full set of EMPLOYEE_ID values. Since all managers are also
employees, this list should return the same rows as a query on EMPLOYEES. It is used here to show the
differences between these similarly structured operators.

SQL> select manager_id from departments
cont> union distinct
cont> select employee_id from employees;
 MANAGER_ID
 00164
 00165
 00166
.
.
.
 00435
 00471
100 rows selected

Make sure that all managers are also employees. List all managers who are not employees. The result shows
that there are no managers in this list.

SQL> select manager_id from departments
cont> except distinct
cont> select employee_id from employees;
0 rows selected

Oracle® Rdb for OpenVMS

8.3.8 New EXCEPT, INTERSECT and MINUS Operators 279

List all employees who are not managers. Or, stated in a different way, list all employees, except those that
are managers. This is done simply by reversing the order of the select expressions from the previous query.
Note that we get quite a different result.

SQL> select employee_id from employees
cont> except distinct
cont> select manager_id from departments;
 EMPLOYEE_ID
 00165
 00167
 00169
.
.
.
 00416
 00435
74 rows selected

Example 4: INTERSECT DISTINCT Operator

Show the managers who are also employees.

SQL> select manager_id from departments
cont> intersect distinct
cont> select employee_id from employees;
 MANAGER_ID
 00164
 00166
 00168
.
.
.
 00418
 00471
26 rows selected

INTERSECT DISTINCT is commutative so reversing the select expressions will yield the same result set.
However, the same ordering of these rows is not guaranteed unless an ORDER BY clause is applied to the
result.

SQL> select employee_id from employees
cont> intersect distinct
cont> select manager_id from departments;
 EMPLOYEE_ID
 00164
 00166
 00168
.
.
.
 00418
 00471
26 rows selected

Oracle® Rdb for OpenVMS

8.3.8 New EXCEPT, INTERSECT and MINUS Operators 280

8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb

This release of Rdb, Release 7.1.0.2, supports the IDENTITY attribute for a table. This special column
attribute is a shorthand mechanism for adding and maintaining a unique id generator for any table. This
feature is based on both the SEQUENCE and AUTOMATIC columns feature.

The IDENTITY attribute can be specified by CREATE or ALTER TABLE.

FORMAT

Oracle® Rdb for OpenVMS

8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb 281

USAGE NOTES

Only columns of the type TINYINT, SMALLINT, INTEGER, or BIGINT can use the IDENTITY
attribute. These types must default to or have a zero scale. Domains may be referenced if they have
these types.

•

This attribute implicitly creates a system sequence with the same name as the table in which it resides.
This sequence can be modified using the ALTER SEQUENCE statement, however, the sequence can
only be dropped using ALTER TABLE ... DROP COLUMN, or by DROP TABLE. There can only
be one column using IDENTITY in any one table.

•

The START WITH and INCREMENT BY values for the created sequence default to 1 if omitted
from the IDENTITY specification. These values can be provided with the IDENTITY attribute. See
the examples below.

•

This attribute implicitly changes the column to be an AUTOMATIC INSERT column, therefore it
becomes a READ ONLY column. Please refer to the documentation on AUTOMATIC columns for
more information.

•

If a TRUNCATE TABLE is executed for this table, the special sequence is reset to the initial starting
value.

•

DEFAULT and IDENTITY may not both be specified for a column.•
AUTOMATIC and IDENTITY may not both be specified for a column.•
When adding an IDENTITY column to an existing table using ALTER TABLE ... ADD COLUMN,
an implicit update query is executed on the table and a value is assigned to the identity column for
each row. The order of rows updated, and hence the values assigned to each row, is dependent on the
query strategy chosen for the update.

•

Constraints, especially PRIMARY KEY, can be defined for the identity column.•
Indices can be defined which include the identity column.•
The IDENTITY attribute implicitly creates a sequence with the same name as the table. This sequence
name can be used by SHOW SEQUENCE, GRANT and REVOKE, and ALTER SEQUENCE. When
granting role and user access to the table, the database administrator will need to also grant SELECT
privilege to the sequence.

•

The DROP SEQUENCE statement is not supported with an identity derived sequence.•
The CURRVAL pseudo column can be used after an insert has been performed so that the sequence
number can be used in related tables. For instance:

•

Oracle® Rdb for OpenVMS

8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb 282

SQL> insert into ORDER values (...);
SQL> insert into ORDER_LINES (ORDER.CURRVAL, ...);
SQL> insert into ORDER_LINES (ORDER.CURRVAL, ...);

This example shows that the FOREIGN KEY value is selected using a reference to the table name
followed by the CURRVAL clause.
The NEXTVAL pseudo column cannot be used to fetch a new identity value. Only an INSERT on the
table can generate a new identity value.

•

If the INSERT on the table is rolled back or fails due to a constraint or trigger error condition, then
the used identity values are discarded. If a row is deleted from the table, the identity value is not
reused. For an exception to the reuse rule, see the usage note on TRUNCATE TABLE.

•

EXAMPLES

Example 1: Using the IDENTITY attribute

This simplified order entry database uses IDENTITY on all tables to generate unique values for the table
primary key field.

SQL> create domain MONEY as INTEGER (2);
SQL> create domain CUSTOMER_ID as INTEGER;
SQL> create domain PRODUCT_ID as INTEGER;
SQL> create domain ORDER_ID as INTEGER;
SQL> create domain LINE_NUMBER as INTEGER
cont> check (VALUE > 0 and VALUE IS NOT NULL)
cont> not deferrable;
SQL>
SQL> create table PRODUCTS
cont> (product_id PRODUCT_ID identity primary key,
cont> product_name char (100),
cont> unit_price MONEY,
cont> unit_name char (10)
cont>);
SQL> create unique index PRODUCTS_IX on PRODUCTS (product_id);
SQL>
SQL> create table CUSTOMERS
cont> (customer_id CUSTOMER_ID identity (1,1) primary key,
cont> customer_name char (100)
cont>);
SQL> create unique index CUSTOMERS_IX on CUSTOMERS (customer_id);
SQL>
SQL> create table ORDERS
cont> (order_id ORDER_ID identity (1000) primary key,
cont> order_date timestamp,
cont> customer_id CUSTOMER_ID references CUSTOMERS
cont>);
SQL> create unique index ORDERS_IX on ORDERS (order_id);
SQL>
SQL> create table ORDER_LINES
cont> (order_id ORDER_ID references ORDERS,
cont> line_number LINE_NUMBER,
cont> product_id PRODUCT_ID references PRODUCTS,
cont> quantity integer,
cont> discount float
cont>);
SQL> create unique index ORDER_LINES_IX on ORDER_LINES (order_id, line_number);
SQL>

Oracle® Rdb for OpenVMS

8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb 283

SQL> show sequences
Sequences in database with filename SQL$DATABASE
 CUSTOMERS
 ORDERS
 ORDER_LINES
 PRODUCTS
SQL> show sequences ORDERS
 ORDERS
 Sequence Id: 4
 Initial Value: 1000
 Minimum Value: 1000
 Maximum Value: (none)
 Next Sequence Value: 1000
 Increment by: 1
 Cache Size: 20
 No Order
 No Cycle
 No Randomize
 Wait
 Comment: column IDENTITY sequence

As can be seen in the example, the START WITH value was explicitly set to 1000, but the INCREMENT BY
value was defaulted to 1.

Example 2: Defaulting all attributes of IDENTITY sequence

SQL> create table PRODUCTS
cont> (product_id PRODUCT_ID identity primary key,
cont> ...);
SQL> show sequence PRODUCTS
 PRODUCTS
 Sequence Id: 5
 Initial Value: 1
 Minimum Value: 1
 Maximum Value: (none)
 Next Sequence Value: 1
 Increment by: 1
 Cache Size: 20
 No Order
 No Cycle
 No Randomize
 Wait
 Comment: column IDENTITY sequence

As can be seen in the example, both the START WITH and INCREMENT BY values for the sequence have
defaulted to 1.

Example 3: Show that the IDENTITY sequence is reserved and cannot be dropped

SQL> drop sequence ORDERS;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−NOMETSYSREL, operation illegal on system defined metadata
−RDMS−E−SEQNOTDEL, sequence "ORDERS" has not been deleted

Example 4: Adding an identity column to an existing table

SQL> alter table EMPLOYEES
cont> add column SEQUENCE_ID integer identity (1000, 10)

Oracle® Rdb for OpenVMS

8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb 284

cont> comment is 'Add unique sequence number for every employee';
SQL>
SQL> show table (column) EMPLOYEES
Information for table EMPLOYEES

Columns for table EMPLOYEES:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
EMPLOYEE_ID CHAR(5) ID_NUMBER
.
.
.
SEQUENCE_ID INTEGER
 Computed: IDENTITY
 Comment: Add unique sequence number for every employee

SQL> select EMPLOYEE_ID, SEQUENCE_ID from employees;
 EMPLOYEE_ID SEQUENCE_ID
 00164 1000
 00165 1010
.
.
.
 00418 1970
 00435 1980
 00471 1990
100 rows selected
SQL>
SQL> show sequence EMPLOYEES
 EMPLOYEES
 Sequence Id: 2
 Initial Value: 1000
 Minimum Value: 1000
 Maximum Value: (none)
 Next Sequence Value: 2000
 Increment by: 10
 Cache Size: 20
 No Order
 No Cycle
 No Randomize
 Wait
 Comment: column IDENTITY sequence
SQL>

8.3.10 Enhanced Bitmapped Scans

The bitmapped scan optimization used in conjunction with ranked indexes has been enhanced to handle more
types of query selections.

Prior to this release, bitmapped scans were only performed if there were at least two ranked indexes that could
be used to satisfy the query and if the query selection on each of the indexes were exact equalities.

This limited the usefulness of the bitmapped scan optimization to relatively simple queries.

Bitmapped scans have now been enhanced to allow the selection criteria to contain ranges: for example,
queries using "OR", "IN", "LIKE", ">", etc.

Oracle® Rdb for OpenVMS

8.3.10 Enhanced Bitmapped Scans 285

For example, bitmapped scan may now be carried out on queries such as:

SQL> create index rsex on employees(sex) type sorted ranked;
SQL> create index rlast_name on employees(last_name) type sorted
ranked;

SQL> select last_name, sex from employees where (last_name ='Toliver' or
cont> last_name = 'Smith') and (sex = 'M' or sex = 'F');

Leaf#01 FFirst EMPLOYEES Card=100 Bitmapped scan
 BgrNdx1 RSEX [(1:1)2] Fan=19
 BgrNdx2 RLAST_NAME [(1:1)2] Fan=12
 LAST_NAME SEX
 Toliver M
 Smith M
 Smith M
3 rows selected

SQL> select last_name, sex from employees where (last_name like
'Tol%') and
cont> (sex = 'M' or sex = 'F');
Leaf#01 FFirst EMPLOYEES Card=100 Bitmapped scan
 BgrNdx1 RLAST_NAME [1:1] Bool Fan=12
 BgrNdx2 RSEX [(1:1)2] Fan=19
 LAST_NAME SEX
 Toliver M
1 row selected

Bitmapped scans can also be carried out using indexes other than sorted ranked indexes as long as at least one
index selected by the dynamic optimizer to access information from the subject table is a sorted ranked index.

This feature is available in Oracle Rdb Release 7.1.0.2.

8.3.11 Extended Record Compression

In previous versions, Oracle Rdb performed record compression by compressing runs of 3 or more repeating
characters. A record to be compressed would be divided into sequences of repeating and non−repeating bytes.

The compression information itself is stored in a single byte. The high bit is set if the byte is indicating
compression and clear if the byte is indicating no compression. The lower 7 bits contain the count. The count
starts at 0; that is, if there is 1 byte in the run, the count will be 0.

If compression is taking place, the following byte will contain the repeating character. If compression is not
taking place, the non−repeating run of bytes will be stored along with the count of non−repeating bytes.

For example:

 0022 03D4 line 1: record type 34
 00 0001 03D6 Control information
 8 bytes of static data
FE00008205000102 03D9 data '.......'
 00 03E1 padding '.'

This storage segment contains a single column of data type INTEGER (longword) with a value of 5.
Contained in the storage segment (the 8 bytes of static data) is the following:

Oracle® Rdb for OpenVMS

8.3.11 Extended Record Compression 286

FE 00 00 82 05 0001 02

Reading from right to left (from the beginning of this record):

02 − Record compression. Bits 0−6 are the run length, in this case 3; bit 7 is clear so what follows is 3
non−repeating bytes.

•

0001 − The first two non−repeating bytes. The record version number, which is a word.•
05 − Non−repeating byte. This is the first byte of the longword integer value.•
82 − Record compression. Bits 0−6 are the run length, in this case 3; bit 7 is set so there is
compression of the following 1 byte, which, when expanded, will be 3 bytes of 00 (null). These are
the three high order bytes of the longword integer.

•

00 − Repeating byte, null value.•
00 − Record compression. Bits 0−6 are the run length, and bit 7 is not set, therefore no compression.
The count is zero, so the run length is 1 byte.

•

FE − Null bit vector. 1 byte for each 8 columns in the table.•

Because 7 bits are used to encode the length, and the maximum value stored in 7 bits is 127, the longest
repeating or non−repeating run that can be encoded with one zero based compression byte is 128 bytes of
data.

For very long runs of repeating bytes, this meant that Oracle Rdb had to use many compression bytes to
encode the long string.

In Oracle Rdb Release 7.1.0, extended compression was introduced but the Release Note documenting it was
inadvertently left out.

If the count is zero in a compression byte, this indicates extended compression, and the actual count is stored
in a word following the compressed character.

The following small record is a single compressed varchar(3000) field containing the data value 'AAAA'.
Note how the extended compression is used. The count 0BB3 is the count (2995+1) of repeating NULL bytes
in the extended varchar field.

 0028 03DC line 0 (1:1971:0) record type 40
 00 0001 03DE Control information
 13 bytes of static data
 FE000BB3008041830004000103 03E1 data '......A..³.. '

FE 00 0BB3 00 80 41 83 00040001 03

Reading from right to left (from the beginning of this record):

03 − Compression byte. The high order bit is set, indicating a run of non−repeating bytes, and the
count is 3 indicating what follows is 4 non−repeating bytes.

•

00040001 − The four non−repeating bytes. In this case, the first two (0001) are the record version
number, and the second two (0004) are the word length of the actual data in the varchar column.

•

83 − Compression byte. The high order bit is set, and the count is 3. This indicates a repeating run of
four characters in length.

•

41 − The byte that repeats 4 times. In this case hex 41 is the ASCII character 'A'.•
80 − Compression byte. The high order bit is set indicating a repeating run, but the count is zero
indicating extended compression.

•

Oracle® Rdb for OpenVMS

8.3.11 Extended Record Compression 287

00 − The repeating byte (in this case null because a varchar with an actual length less than the defined
length is padded with null characters out to the defined length).

•

0BB3 − The extended compression run length. Hex 0BB3 is the count (2995+1) of repeating NULL
bytes in the extended varchar field.

•

00 − Compression byte. The high order bit is clear indicating a non−repeating run, and the count is
zero indicating a run length of 1 byte.

•

FE − Null bit vector.•

In this way, far fewer compression bytes are needed for very long repeating strings.

Extended compression is enabled once a database has been converted to Oracle Rdb Release 7.1.0. If a
database has been converted with the /NOCOMMIT qualifier, extended compression will not be used until the
convert is committed.

8.3.12 RMU /UNLOAD /AFTER_JOURNAL Wildcard Table Names

The RMU /UNLOAD /AFTER_JOURNAL command now supports wildcard processing of table names. The
asterisk (*) and the percent sign (%) wildcard characters can be used in the table name specification to select
all tables that satisfy the components you specify. The asterisk (*) matches zero or more characters and the
percent sign (%) matches a single character.

Further, for table names that contain wildcard characters, if the first character of the string is a pound sign (#),
the wildcard specification is changed to a "not matching" comparison. This allows exclusion of tables based
on a wildcard specification. Note that the pound sign (#) designation is only evaluated when the table name
specification contains an asterisk (*) or percent sign (%).

For example, a table name specification of "*" indicates that all tables in the database are to be selected. A
table name specification of "FOO%" indicates that all table names that are four characters long and that start
with the string "FOO" (such as "FOOD" and "FOOT") are to be selected.

This feature is available in Oracle Rdb Release 7.1.0.2.

8.3.13 New NAME Clause for SET/DECLARE TRANSACTION
Statement

This release of Oracle Rdb supports the NAME clause as part of the DECLARE and SET TRANSACTION
statements so that the transaction can be given a title. This information is displayed by the SET FLAGS
TRANSACTION keyword.

SQL> declare transaction read write name 'default−transaction';
SQL> select * from rdb$database;
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=23)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_BUFFER_NAME "default−transaction"
0016 (00022) TPB$K_WRITE (read write)
~T Start_transaction (3) on db: 1, db count=1
.
.
.

Oracle® Rdb for OpenVMS

8.3.12 RMU /UNLOAD /AFTER_JOURNAL Wildcard Table Names 288

This is the revised syntax for the tx−options clause for both SET TRANSACTION and DECLARE
TRANSACTION.

FORMAT

Usage Notes

Only one of the clauses: READ ONLY, READ WRITE or BATCH UPDATE may be used.•
No other clauses may be specified with BATCH UPDATE.•
Only one of the clauses, WAIT and NOWAIT, may be used.•
ISOLATION LEVEL may only be specified once.•
The clauses can be specified in any order.•
The quoted−string provided for NAME can be up to 255 octets in length.•

8.3.14 New Built In Functions for Oracle RDBMS Compatibility

In prior releases of Oracle Rdb 7.1, the functions LENGTH and LENGTHB were provided as SQL stored
functions that accepted a VARCHAR (2000) parameter and performed the appropriate
CHARACTER_LENGTH or OCTET_LENGTH operation on the argument.

These functions, as supplied by SYS$LIBRARY:SQL_FUNCTIONS, are now obsolete. They are retained in
the database for existing applications but new applications will now use new native functions in Rdb. These
changes allow a more general usage for multiple characters sets and string length.

LENGTH is a synonym for the ISO SQL:1999 function CHAR_LENGTH (or
CHARACTER_LENGTH).

•

LENGTHB is a synonym for the ISO SQL:1999 function OCTET_LENGTH.•
VSIZE is a synonym for the Rdb function SIZEOF.•

Oracle® Rdb for OpenVMS

8.3.14 New Built In Functions for Oracle RDBMS Compatibility 289

Please refer to the Oracle Rdb7 SQL Reference Manual for a description of LENGTH, and LENGTHB. The
Oracle Rdb Release 7.1.0 Release Notes describe the SIZEOF function.

8.3.15 New AND CHAIN Syntax Supported for COMMIT and
ROLLBACK

Format

Usage Notes

The AND CHAIN clause is only permitted in a compound statement (i.e. in a BEGIN ... END block),
or as the body of a stored procedure.

•

When AND CHAIN is used, a new transaction is implicitly started using the same attributes as the
previously commited or rolled back transaction. Attributes such as READ WRITE, READ ONLY,
RESERVING, EVALUATING, WAIT, and ISOLATION LEVEL are retained for the new
transaction.

•

Applications can use this new clause to simplify applications, since the complex transaction attributes
need only be specified once.

•

When the SET FLAGS option TRANSACTION_PARAMETERS is specified, a line of output is
written to identify the chained transaction. Each SET TRANSACTION assigns a unique sequence
number which is displayed after each transaction action line.

~T Restart_transaction (3) on db: 1, db count=1

•

Example

The following simple example executes SET TRANSACTION once at the start of the procedure. Then,
periodically, the transaction is committed and restarted using the COMMIT AND CHAIN syntax. This
simplifies the application since there is only one definition of the transaction characteristics.

SQL> −− process table in batches
SQL>
SQL> set compound transactions 'internal';
SQL> set flags 'transaction,trace';
SQL>
SQL> begin
cont> declare :counter integer = 0;
cont> declare :emp integer;

Oracle® Rdb for OpenVMS

8.3.15 New AND CHAIN Syntax Supported for COMMIT and ROLLBACK 290

cont>
cont> set transaction
cont> read write
cont> reserving employees for exclusive write;
cont>
cont> for :emp in 0 to 600
cont> do
cont> begin
cont> declare :id char(5)
cont> default substring (cast (:emp+100000 as varchar(6))
cont> from 2 for 5);
cont> if exists (select * from employees where employee_id = :id)
cont> then
cont> trace 'found: ', :id;
cont> if :counter > 20
cont> then
cont> commit and chain;
cont> set :counter = 1;
cont> else
cont> set :counter = :counter + 1;
cont> end if;
cont> end if;
cont> end;
cont> end for;
cont>
cont> commit;
cont> end;
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 1, db count=1
~T Rollback_transaction on db: 1
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=14)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
0002 (00002) TPB$K_LOCK_WRITE (reserving) "EMPLOYEES" TPB$K_EXCLUSIVE
~T Start_transaction (3) on db: 1, db count=1
~Xt: found: 00164
~Xt: found: 00165
.
.
.
~Xt: found: 00185
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00186
~Xt: found: 00187
.
.
.
~Xt: found: 00435
~Xt: found: 00471
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
SQL>

Oracle® Rdb for OpenVMS

8.3.15 New AND CHAIN Syntax Supported for COMMIT and ROLLBACK 291

8.3.16 New Options for SET FLAGS Statement

This release of Oracle Rdb adds two new SET FLAGS keywords.

WATCH_CALL
This keyword traces the execution of queries, triggers and stored functions and procedures. The
output includes the name of the trigger, function or procedure or "unnamed" for an anonymous query.
In most cases, a query can be named using the OPTIMIZE AS clause. It also includes the value of
CURRENT_USER during the execution of that routine. CURRENT_USER may be inherited from
any module that uses the AUTHORIZATION clause.
This flag can be disabled using NOWATCH_CALL, by using SET NOFLAGS, or using SET FLAGS
'NONE'.

•

WATCH_OPEN
This keyword traces all queries executed on the database. This may include SQL runtime system
queries to lookup table names as well as queries executed by the application. The output includes the
32 digit hex identifier, the same as used by the CREATE OUTLINE statement. This value uniquely
identifies the query being executed.
If a query is a stored routine (function or procedure) then the notation "(stored)" is appended. If the
query is named then it will be classified as "(query)", otherwise it will be designated as "(unnamed)".
See the examples below for details.
This flag can be disabled using NOWATCH_OPEN, by using SET NOFLAGS, or using SET FLAGS
'NONE'.

•

Usage Notes

These keywords can also be used with the RDMS$SET_FLAGS logical name.•
The RDMS$DEBUG_FLAGS value "Xa" can also be used to enable WATCH_CALL.•
The RDMS$DEBUG_FLAGS value "Xo" can also be used to enable WATCH_OPEN.•
When using interactive or dynamic SQL, both WATCH_CALL and WATCH_OPEN will generate
trace lines for the queries performed by the SQL runtime system against the Rdb system tables. There
is no mechanism to disable the trace of such information.

•

These flags cause queries and routines to be modified to output this information. This might add some
extra CPU overhead to the application while this information is collected. Even when the flags are
disabled, there exists some overhead that is not eliminated until the module or query is released,
usually at DISCONNECT time.

•

Examples

Example 1: WATCH_CALL

This example shows the output of WATCH_CALL for an INSERT statement which causes an AFTER
INSERT trigger (AFTER_INSERT) to be executed which calls a SQL function WRITE_TEXT to trace the
input data. It then traces a query named using the OPTIMIZE AS clause.

SQL> insert into SAMPLE_T values ('Fred');
~Xa: routine "(unnamed)", user=SMITHI
~Xa: routine "AFTER_INSERT", user=SMITHI
~Xa: routine "WRITE_TEXT", user=SMITHI
~Xt: Fred
1 row inserted
SQL> select * from SAMPLE_T
cont> optimize as LOOKUP_SAMPLE_T;

Oracle® Rdb for OpenVMS

8.3.16 New Options for SET FLAGS Statement 292

~Xa: routine "LOOKUP_SAMPLE_T", user=SMITHI
 NEW_NAME
 Fred
1 row selected

Example 2: WATCH_OPEN

This example shows the output of WATCH_OPEN for the same INSERT statement as seen in Example 1.

SQL> insert into SAMPLE_T values ('Fred');
~Xo: Start Request B667E51E3625026EB7FFF3F4D3A16DC3 (unnamed)
~Xo: Start Request A8568053FE5A1A0852A1BE83A884016F "AFTER_INSERT" (query)
~Xo: Start Request 08AE59062657299B4768F6C2DFB6928E "WRITE_TEXT" (stored)
~Xt: Fred
1 row inserted
SQL>
SQL> select * from SAMPLE_T
cont> optimize as LOOKUP_SAMPLE_T;
~Xo: Start Request F6025FAB1DD36B0DE0E52F3A9641BC5F "LOOKUP_SAMPLE_T" (query)
 NEW_NAME
 Fred
 Fred
2 rows selected

Oracle® Rdb for OpenVMS

8.3.16 New Options for SET FLAGS Statement 293

8.4 Enhancements Provided in Oracle Rdb Release
7.1.0.1

8.4.1 SQL Now Supports a Native ABS Function

In prior releases of Oracle Rdb, the ABS function was provided by the SQL_FUNCTIONS script. This
function was a DOUBLE PRECISION function that allowed values of most data types to be processed.

However, there were some inconsistencies introduced when large BIGINT values were used as rounding
errors were introduced since DOUBLE PRECISION supports about 16 digits accuracy compared to the 18
digits supported by BIGINT. In addition, the INTERVAL data type could not be used with the provided
function.

With this release, a new conditional function, ABS, conforming to the SQL:1999 database language standard,
is now available. The ABS function returns NULL if the passed value expression evaluates to NULL. The
datatype of the result is the same as the passed value expression and supports scaled values of these data
types: TINYINT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE PRECISION, INTERVAL,
DECIMAL, NUMERIC and NUMBER.

The absolute value function (ABS) returns NULL if the value expression evaluates to NULL. If the value
expression evaluates to a value less than zero then that value is negated so that a positive value is returned.
Otherwise the value is returned unchanged. For instance, ABS (−1) will return the value 1.

ABS (a) is equivalent to the CASE expression:

 case
 when a < 0 then − a
 else a
 end

USAGE NOTES:

The SQL_FUNCTIONS script still includes the ABS external function definition for those stored
definitions (procedures, functions, triggers, views, etc.) or compiled applications that currently use it.
However, new references to ABS will use the new builtin conditional expression.

•

Applications wishing to continue to use the external function should use delimiters around the ABS
function name, as in the following example.

SQL> set quoting rules 'SQL92';
SQL> select "ABS" (v) from T;

The delimited name will force the function definition to be used.

•

Please refer to Appendix G, Oracle Rdb7 SQL Reference Manual, Volume 3 for more information on
the SQL_FUNCTIONS script.

•

Example 1: This example uses the ABS function on an INTERVAL result of a date subtraction.

SQL> select

8.4 Enhancements Provided in Oracle Rdb Release 7.1.0.1 294

cont> ABS ((birthday − current_date) year(3))
cont> from employees
cont> order by employee_id
cont> limit to 10 rows;

 054
 047
 047
 064
 068
 062
 044
 069
 050
 074
10 rows selected

Example 2: This shows a more complex use of ABS within a statistical function.

SQL> −− what is the average time in a job for each employee
SQL> −− exclude anyone on there first job
SQL> select
cont> employee_id,
cont> AVG (ABS (EXTRACT (MONTH FROM (job_start − job_end) month (4))))
cont> as "Average Job" edit using '−−,−−−,−−9.99" years"'
cont> from JOB_HISTORY
cont> where employee_id < '00200'
cont> group by employee_id
cont> having COUNT (*) > 1;
 EMPLOYEE_ID Average Job
 00164 14.00 years
 00165 22.67 years
 00166 20.00 years
 00167 14.50 years
 00168 26.33 years
 00169 22.67 years
...etc...
 00197 26.33 years
 00198 37.00 years
 00199 35.00 years
30 rows selected
%RDB−I−ELIM_NULL, null value eliminated in set function

8.4.2 New DUMP Output Format for LogMiner

A new output format type of "DUMP" has been added to the RMU /UNLOAD /AFTER_JOURNAL
command. This output format is intended solely as a debug and informational tool. For each column of a
record, the first 200 bytes of data contents are formatted such that binary numeric fields are converted to text
and text fields are displayed with periods (.) replacing non−printable characters. NULL columns are indicated
with the character string "NULL". The actual data length is indicated for VARCHAR columns.

Example output with the /FORMAT=DUMP qualifier:

$ RMU /UNLOAD /AFTER_JOURNAL MYDB.RDB MYDB.AIJBCK /FORMAT=DUMP
 /TABLE=(NAME=ALL_DATATYPES_TBL, OUTPUT=SYS$OUTPUT:)
RDB$LM_ACTION : M
RDB$LM_RELATION_NAME : ALL_DATATYPES_TBL

Oracle® Rdb for OpenVMS

8.4.2 New DUMP Output Format for LogMiner 295

RDB$LM_RECORD_TYPE : 25
RDB$LM_DATA_LEN : 460
RDB$LM_NBV_LEN : 66
RDB$LM_DBK : 46:635:0
RDB$LM_START_TAD : 21−JUL−2001 15:48:52.6512009
RDB$LM_COMMIT_TAD : 21−JUL−2001 15:48:53.0586846
RDB$LM_TSN : 160
RDB$LM_REC_VER : 1
TINT : −123
SINT : −321
INTEGER : −212
BINT : NULL
DECIMAL : −145
NUMERIC : NULL
FLOAT : −1.000000000000000E+000
DOUBLE_PRECISION : −2.000000000000000E+000
CHAR1 : A
CHAR20 : ABCDEFGHIJKLMNOPQRST
VCHAR_COL : (10) ABCDEFGHIJ

Note

The contents and format of the output when the /FORMAT=DUMP qualifier is specified
may change in the future.

If needed, the record definition (.RRD) file may be used to determine the actual data type for each field of the
table(s) being extracted.

8.4.3 Data and SPAM Prefetch Screens Added to RMU/SHOW
STATISTICS

Two new screens have been added to the PIO statistics part of RMU/SHOW STATISTICS. These screens
display prefetch statistics (APF and DAPF). In prior versions, the DAPF statistics were displayed on the
"Fetch" screens. Those statistics were moved to the new prefetch screens. In addition, APF statistics are now
displayed on the new screens as well. An example is provided below:

Node: NODE1 (1/1/1) Oracle Rdb V7.0−62 Perf. Monitor 6−AUG−2001 10:28:10.65
Rate: 3.00 Seconds PIO Statistics−−Data Prefetches Elapsed: 00:58:17.86
Page: 1 of 1 DEV:[DIR]DB.RDB Mode: Online
−−

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

APF start:success 0 0 0.4 872 1.0
 :failure 0 0 0.0 101 0.1

APF I/O: utilized 0 0 0.4 872 1.0
 : wasted 0 0 0.0 0 0.0

DAPF start:success 0 0 0.0 74 0.0
 :failure 0 0 0.0 62 0.0

DAPF I/O: utilized 0 0 0.0 18 0.0
 : wasted 0 0 0.0 56 0.0

Oracle® Rdb for OpenVMS

8.4.3 Data and SPAM Prefetch Screens Added to RMU/SHOW STATISTICS 296

The information on these screens may be used to determine the effectiveness of the APF and DAPF features.
The individual rows may be interpreted as follows:

The "APF start:success" statistics shows how many times Oracle Rdb successfully initiated an I/O to
prefetch a buffer.

•

The "APF start:failure" statistics shows how many times Oracle Rdb attempted to initiate a prefetch
but was unable to obtain the necessary buffer lock to proceed.

•

The "APF I/O: utilized" statistics shows how many times Oracle Rdb actually used a buffer that was
prefetched.

•

The "APF I/O: wasted" statistics shows how many times Oracle Rdb prefetched a buffer but never
actually used it.

•

8.4.4 RMU/SHOW STATISTICS Stall Log Lock Information
Optional

Bug 1704232

A new optional keyword "[NO]LOG_STALL_LOCK" has been added to the "/OPTIONS" qualifier of the
RMU/SHOW STATISTICS command. When using the /STALL_LOG qualifier to write stall messages to a
log file, you can now specify /OPTIONS=NOLOG_STALL_LOCK to prevent lock information from being
written to the log file.

The following example shows stall log information first with the lock information and then without the lock
information:

$ RMU /SHOW STATISTICS /NOINTERACTIVE /STALL_LOG=SYS$OUTPUT: −
 DUA0:[DB]MFP.RDB
 Oracle Rdb X7.1−00 Performance Monitor Stall Log
 Database DPA500:[RDB_RANDOM.RDB_RANDOM_TST_247]RNDDB.RDB;1
 Stall Log created 4−SEP−2001 11:27:03.96
11:27:03.96 0002B8A1:1 11:27:03.67 waiting for record 118:2:2 (PR)
 State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 118:2:2"
 Blocker: 000220A7 RND_TST_24716 0F019E52 EX Grant
 Waiting: 0002B8A1 RND_TST_24715 4500C313 PR Wait
11:27:03.96 0002B8A8:1 11:27:02.32 waiting for record 101:3:0 (EX)
 State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 101:3:0"
 Blocker: 000220AD RND_TST_24710 0B00176A PR Grant
 Blocker: 000220A7 RND_TST_24716 52018A3F PR Grant
 Waiting: 0002B8A8 RND_TST_2474 3C00B5AF EX PR Cnvrt
11:27:03.96 0002B89C:1 11:27:00.15 waiting for record 114:4:1 (PR)
 State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 114:4:1"
 Blocker: 000220A7 RND_TST_24716 180033CC EX Grant
 Waiting: 0002B89C RND_TST_2479 110066BA PR Wait

$ RMU /SHOW STATISTICS /NOINTERACTIVE /STALL_LOG=SYS$OUTPUT: −
 DUA0:[DB]MFP.RDB /OPTIONS=NOLOG_STALL_LOCK
 Oracle Rdb X7.1−00 Performance Monitor Stall Log
 Database DPA500:[RDB_RANDOM.RDB_RANDOM_TST_247]RNDDB.RDB;1
 Stall Log created 4−SEP−2001 11:28:34.68
11:28:34.69 0002B8B8:1 11:28:33.69 waiting for logical area 146 (PR)
11:28:34.69 0002B8A8:1 11:28:32.76 waiting for record 114:4:2 (PR)
11:28:34.69 0002B8B3:1 11:28:33.06 waiting for record 114:4:2 (PR)
11:28:34.69 0002B8B0:1 11:28:31.96 waiting for record 111:7:7 (EX)

Oracle® Rdb for OpenVMS

8.4.4 RMU/SHOW STATISTICS Stall Log Lock Information Optional 297

8.4.5 New Option for the GET DIAGNOSTICS Statement

For Oracle Rdb Release 7.1.0.1, a new option has been added to the GET DIAGNOSTICS statement:
IMAGE_NAME.

This keyword requests that the activating image name be returned to the caller. The image name includes the
node name from which the attach was started. This might be a node different than that on which the Rdb
server is running.

The data is returned to the caller as a VARCHAR (255) value and should be assigned to either a VARCHAR
or CHAR data type that supports the ASCII character set.

The following example uses a SQL procedure to fetch the image name for the currently running application
(in this case interactive SQL).

SQL> set flags 'trace';
SQL> begin
cont> declare :i varchar(512);
cont> get diagnostics :i = image_name;
cont> trace char_length (:i);
cont> trace '"' || :i || '"';
cont> end;
~Xt: 57
~Xt: "MYNODE::111DUA618:[SYS0.SYSCOMMON.][SYSEXE]SQL$71.EXE;1"

8.4.6 Alternate Outline Ids

If outlines have not been disabled, Oracle Rdb will search for an appropriate outline for the query it is
optimizing, thus allowing some user control of the strategy used for execution of a query.

The OPTIMIZE USING clause may be used to tell the optimizer which outline to use for compilation. If no
OPTIMIZE USING clause is present, Rdb uses the query to generate an identifier which it will use to try to
locate an appropriate outline.

In many situations, such as when using third party software, it is not possible for the user to provide an outline
name for the query and thus the only alternative Rdb had was to try to locate an outline with a matching
identifier.

As the identifier is a hashed value that depends on the query structure, small changes in the query, such as
different literal values, can change the identifier produced as in the following example.

SQL> set flags 'outline';
SQL> select * from employees where employee_id = '1';
−− Rdb Generated Outline : 19−SEP−2001 13:52
create outline QO_8797A75D6D03F6BD_00000000
id '8797A75D6D03F6BDD211A092CE6F3A2C'
mode 0
as (
 query (
−− For loop
 subquery (
 EMPLOYEES 0 access path index EMP_EMPLOYEE_ID

Oracle® Rdb for OpenVMS

8.4.5 New Option for the GET DIAGNOSTICS Statement 298

)
)
)
compliance optional ;
0 rows selected
SQL> select * from employees where employee_id = '9999';
−− Rdb Generated Outline : 19−SEP−2001 13:52
create outline QO_C9F12D27AC5D3163_00000000
id 'C9F12D27AC5D3163907A4329FDC8170A'
mode 0
as (
 query (
−− For loop
 subquery (
 EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)
)
)
compliance optional ;

In this example, the two queries are optimized the same but the differing outline identifiers means that two
different outlines would have to be created to control each query.

Oracle Rdb has now been enhanced to allow the optional creation of alternate outline identifiers. In this
release, the optimizer discards literal values when producing the identifiers.

A new SET FLAGS attribute has been introduced to allow the control of these alternate identifiers, using
either the SQL SET FLAGS statement or the RDMS$SET_FLAGS logical name.

ALTERNATE_OUTLINE_ID(LITERALS)

This attribute is not case sensitive and may be abbreviated to:

ALT(LIT)

The following example uses SET FLAGS to enable alternate query identifiers:

SQL> set flags 'alt(LIT), outline';
SQL> select * from employees where employee_id = '1';
−− Rdb Generated Outline : 19−SEP−2001 13:52
create outline QO_847AD7287E247D37_00000000
id '847AD7287E247D37E8E4CC8221FFC12E'
mode 0
as (
 query (
−− For loop
 subquery (
 EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)
)
)
compliance optional ;
0 rows selected
SQL> select * from employees where employee_id = '9999';
−− Rdb Generated Outline : 19−SEP−2001 13:52
create outline QO_847AD7287E247D37_00000000
id '847AD7287E247D37E8E4CC8221FFC12E'
mode 0

Oracle® Rdb for OpenVMS

8.4.5 New Option for the GET DIAGNOSTICS Statement 299

as (
 query (
−− For loop
 subquery (
 EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)
)
)
compliance optional ;
0 rows selected

Note that now the two outlines have the same identifier and the user may now store this more generic outline
to be used by any similar query where only the literal values differ. For example:

SQL> set flags 'alt(lit)';
SQL> create outline o1 from (select * from employees where employee_id = '1');
SQL> set flags 'strat';
SQL> select * from employees where employee_id = '1';
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id = 'AAAAAA';
~S: Outline "O1" used
Conjunct Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected

Any outline stored for a query without the ALTERNATE_OUTLINE_ID flag being set will be created using
the full query as in previous versions and will take precedence over any generic outline. For example:

SQL> set noflags;
SQL> create outline o1 from (select * from employees where employee_id = '1');
SQL> set flags 'strat';
SQL> select * from employees where employee_id = '1';
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id = '9999';
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> set noflags;
SQL> set flags 'alternate(lit),nooutline';
SQL> create outline o2 from (select * from employees where employee_id = '1');
SQL>
SQL> set flags 'strat';
SQL> select * from employees where employee_id = '1';
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id = '9999';
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL>
SQL> set flags 'noalt';

Oracle® Rdb for OpenVMS

8.4.5 New Option for the GET DIAGNOSTICS Statement 300

SQL> select * from employees where employee_id = '1';
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id = '9999';
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> drop outline o1;
SQL> set flags 'alt(literals)';
SQL> select * from employees where employee_id = '1';
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id = '9999';
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected

As shown in the previous example, Oracle Rdb will try to locate an outline using the more generic identifier
only if the ALTERNATE_OUTLINE_ID flag has been set.

The ALTERNATE_OUTLINE_ID flag is not set by default and must be explicitly set using either SET
FLAGS or the RDMS$SET_FLAGS logical.

This feature is available in Oracle Rdb Release 7.1.0.1.

8.4.7 Field Widths Wider on Row Cache Overview Display

On the "Row Cache Overview" display, the width of the "Searches" column has been increased from 9 to 10
characters to allow a display of up to 4294967295 (after this value, the 32−bit counter wraps back to zero). In
addition, the width of the cache name column is tied to the screen width. If the screen is set to be wide enough
(over 90 columns), the full cache name will be displayed; normally, only the first 24 characters of the name
are displayed.

Additionally, the comparison used when sorting by values on the "Row Cache Overview" display has been
modified to be unsigned (rather than signed). This prevents some cases of very large values being sorted in an
incorrect order.

8.4.8 FOR Counted Loop Enhancements

In Oracle Rdb Release 7.1, the FOR counted loop was added to SQL. This type of loop increments a declared
variable from an initial value to a final value. In the prior release of Rdb, the data type of the variable had to
be a numeric data type (TINYINT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE
PRECISION, NUMBER, NUMERIC, or DECIMAL).

The following enhancements have been made for this release:

The following data types are now also legal for this type of FOR loop.

 INTERVAL YEAR

•

Oracle® Rdb for OpenVMS

8.4.7 Field Widths Wider on Row Cache Overview Display 301

 INTERVAL MONTH
 INTERVAL DAY
 INTERVAL HOUR
 INTERVAL MINUTE
 INTERVAL SECOND

If INTERVAL is used, then the initial and final values must be of the same type (i.e. the expressions
must have the same data type as the loop variable).
The data type rules for the initial and final values have been relaxed when the loop variable is
numeric. These value expressions can be any compatible numeric data type. For instance, floating
point or scaled numeric values can now be used.

•

A new optional STEP clause has been added to control the size of the increment between loop
iterations. The step size is specified using a numeric value expression.

SQL> begin
cont> declare :i integer;
cont> for :i in 1 to 20 step 5
cont> do
cont> trace :i;
cont> end for;
cont> end;
~Xt: 1
~Xt: 6
~Xt: 11
~Xt: 16

NOTE: Even if the loop control variable is an INTERVAL type, the STEP must be numeric type. In
addition, the value must be greater than zero: use the REVERSE keyword to decrement the loop
control variable.

•

FORMAT

USAGE NOTES

Oracle® Rdb for OpenVMS

8.4.7 Field Widths Wider on Row Cache Overview Display 302

The FOR loop uses the keyword TO as a separator between the initial and final value expressions.
This same keyword is used to separate the field names in an interval qualifier. Therefore, there is an
ambiguity possible when an apparently well−formed expression is used.

SQL> begin
cont> declare :i interval year;
cont> for :i in interval'1' year to interval'4'year
for :i in interval'1' year to interval'4'year
 ^
%SQL−W−LOOK_FOR_STT, Syntax error, looking for:
%SQL−W−LOOK_FOR_CON, MONTH,
%SQL−F−LOOK_FOR_FIN, found INTERVAL instead

This occurs because the TO separator is interpreted as part of the INTERVAL literal or expression.
Programmers must enclose the initial expression in parentheses to avoid this ambiguity if it ends with
an interval qualifier.

•

The STEP value expression is evaluated before the loop variable is assigned a value. The value must
be greater than zero and never NULL. If these constraints are violated, a runtime error is reported as
shown in this simple example.

SQL> begin
cont> declare :l, :s integer;
cont>
cont> −− set the step size
cont> set :s = 0;
cont>
cont> for :l in reverse 1 to 10 step :s
cont> do
cont> trace :l;
cont> end for;
cont> end;
%RDB−E−NOT_VALID, validation on field STEP caused operation to fail
SQL>

Example 1: This example shows an INTERVAL type as the loop variable.

SQL> begin
cont> declare :i interval year;
cont> for :i in (interval'1' year) to (interval'4'year)
cont> do
cont> trace :i;
cont> end for;
cont> end;
~Xt: 01
~Xt: 02
~Xt: 03
~Xt: 04

Example 2: This example uses a complex expression as the STEP expression.

SQL> begin
cont> declare :i interval year;
cont> declare :k interval year = interval'18'year;
cont> declare :j integer = 2;

•

Oracle® Rdb for OpenVMS

8.4.7 Field Widths Wider on Row Cache Overview Display 303

cont>
cont> for :i in (interval'1' year) to :k/2 step :j*2
cont> do
cont> trace :i;
cont> end for;
cont> end;
~Xt: 01
~Xt: 05
~Xt: 09

8.4.9 Enhancements to SET DISPLAY Statement for Interactive
SQL

This release of Oracle Rdb, 7.1.0.1, includes the following enhancements to the SET DISPLAY statement.

A new NULL STRING clause to change the way NULL values are displayed by interactive SQL.•
A new DEFAULT NULL STRING clause to revert to using the text 'NULL'.•
A new [NO] COMMENT clause to disable or enable the display of comment text by other SHOW
commands (e.g. SHOW TABLE).

•

FORMAT

USAGE NOTES

The width of the displayed column is calculated using the maximum of the length of the column
name, the length of the QUERY HEADER, the length of the NULL string and the size of the
formatted data.

•

The statement SET DISPLAY DEFAULT NULL STRING is equivalent to SET DISPLAY NULL
STRING 'NULL'.

•

The SET NULL statement has been added for compatibility with Oracle SQL*Plus. SET NULL is a
synonym for SET DISPLAY NULL STRING '', and SET NULL 'literal' is equivalent to SET
DISPLAY NULL 'literal'.

•

SET DISPLAY NULL STRING accepts a string literal, or a declared local variable.•
SHOW DISPLAY now displays the current NULL string.

SQL> show display

•

Oracle® Rdb for OpenVMS

8.4.9 Enhancements to SET DISPLAY Statement for Interactive SQL 304

Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 30 lines
Line length is set to 80 bytes
Display NULL values using "NULL"

The GET ENVIRONMENT statement now includes the NULL_STRING keyword that can be used to
save the currently defined text.

•

Example 1: Replace the NULL values with text to make the output easier to read.

SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = '00164';
 JOB_START JOB_END
 21−Sep−1981 NULL Board Manufacturing North
 5−Jul−1980 20−Sep−1981 Cabinet & Frame Manufacturing
2 rows selected
SQL> set display null string '(still employeed)'
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = '00164';
 JOB_START JOB_END
 21−Sep−1981 (still employeed) Board Manufacturing North
 5−Jul−1980 20−Sep−1981 Cabinet & Frame Manufacturing
2 rows selected

Example 2: Disable the comment display to make the output of SHOW easier to read.

SQL> show domain id_dom
ID_DOM CHAR(5)
 Comment: standard definition of employee id
SQL> set display no comment;
SQL> show domain id_dom
ID_DOM CHAR(5)
SQL>

Example 3: Save the current NULL string using GET ENVIRONMENT and restore after executing a query.

SQL> declare :ns varchar(100);
SQL> get environment (session) :ns = NULL_STRING;
SQL> set null;
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = '00164';
 JOB_START JOB_END
 21−Sep−1981 Board Manufacturing North
 5−Jul−1980 20−Sep−1981 Cabinet & Frame Manufacturing
2 rows selected
SQL> set display null string :ns;

Oracle® Rdb for OpenVMS

8.4.9 Enhancements to SET DISPLAY Statement for Interactive SQL 305

SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = '00164';
 JOB_START JOB_END
 21−Sep−1981 NULL Board Manufacturing North
 5−Jul−1980 20−Sep−1981 Cabinet & Frame Manufacturing
2 rows selected

8.4.10 New BITSTRING Built In Function

Rdb now supports a BITSTRING function that can be used to extract selected bits from a binary data value.
This functionality is primarily intended to query the bit values stored in the RDB$FLAGS columns in the Rdb
system table but can also be used for user data.

BITSTRING accepts numeric and date/time values and processes them as bit arrays. The first (least
significant) bit is numbered 1. The most significant bit depends on the data type.

TINYINT has 8 bits•
SMALLINT has 16 bits•
INTEGER has 32 bits•
BIGINT, DATE, TIME, TIMESTAMP and INTERVAL types have 64 bits•

FORMAT

USAGE NOTES

The numeric expression after the FOR and FROM keywords must be an unscaled numeric value.•
If the numeric expression of the FOR clause is less than or equal to zero then it will be assumed equal
to 1.

•

If the FOR clause is omitted, it will default to a value that includes all remaining bits of the source
value.

•

If the FOR clause specifies a larger value than the number of bits remaining in the source then it will
only return the remaining bits.

•

Example: Bit 1 in the RDB$FLAGS column of RDB$RELATIONS indicates that the table is a view. This
example uses this query to fetch the names of all user defined views in the PERSONNEL database.

SQL> select rdb$relation_name
cont> from rdb$relations
cont> where rdb$system_flag = 0 and
cont> bitstring (rdb$flags from 1 for 1) = 1;
 RDB$RELATION_NAME

Oracle® Rdb for OpenVMS

8.4.10 New BITSTRING Built In Function 306

 CURRENT_JOB
 CURRENT_SALARY
 CURRENT_INFO
3 rows selected
SQL>

8.4.11 New SET PAGE LENGTH Command for Interactive SQL

SQL now includes a SET PAGE LENGTH statement to size the page. Currently this is only used by the
pagination control in the SQL HELP command.

FORMAT

USAGE NOTES

The integer value must be a value between 10 and 32767.•
SET PAGE LENGTH can be used to effectively disable the paging performed by help by setting the
length to a high value such as 32000.

•

The page length is automatically set upon entry to interactive SQL and is based on the OpenVMS
terminal setting for this session.

•

The SHOW DISPLAY command can be used to view the currently defined page length.•

This example uses the SET PAGE LENGTH command to change the pagination length of HELP.

SQL> set page length 40;
SQL> show display
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 40 lines
Line length is set to 80 bytes
Display NULL values using "NULL"

8.4.12 New ALTER CONSTRAINT Statement

Oracle Rdb Release 7.1 includes an ALTER CONSTRAINT statement.

FORMAT

Oracle® Rdb for OpenVMS

8.4.11 New SET PAGE LENGTH Command for Interactive SQL 307

Note: constraint−attributes are described in the Oracle Rdb New and Changed Features Manual.

USAGE NOTES

If a constraint attribute is changed, it will only be effective for future references to the table
containing that constraint. That is, if a constraint is already active then it will use the previously
defined attributes.

•

The constraint name can be prefixed with an alias name as in the following example.

SQL> alter constraint db1.ALL_UNIQUE
cont> deferrable initially deferred;

•

This example shows how ALTER CONSTRAINT can be used to change the constraint attributes and add a
comment to a constraint.

SQL> set dialect 'sql99';
SQL> attach 'file db$:mf_personnel';
SQL>
SQL> create table PERSON
cont> (last_name char(20)
cont> constraint MUST_HAVE_LAST_NAME
cont> not null
cont> deferrable,
cont> first_name char(20),
cont> birthday date
cont> constraint MUST_BE_IN_PAST
cont> check (birthday < current_date)
cont> not deferrable,
cont> constraint ALL_UNIQUE

Oracle® Rdb for OpenVMS

8.4.11 New SET PAGE LENGTH Command for Interactive SQL 308

cont> unique (last_name, first_name, birthday)
cont> deferrable initially immediate
cont>);
SQL>
SQL> show table (constraint) PERSON
Information for table PERSON

Table constraints for PERSON:
ALL_UNIQUE
 Unique constraint
 Null values are considered distinct
 Table constraint for PERSON
 Evaluated on each VERB
 Source:
 UNIQUE (last_name, first_name, birthday)

MUST_BE_IN_PAST
 Check constraint
 Column constraint for PERSON.BIRTHDAY
 Evaluated on UPDATE, NOT DEFERRABLE
 Source:
 CHECK (birthday < current_date)

MUST_HAVE_LAST_NAME
 Not Null constraint
 Column constraint for PERSON.LAST_NAME
 Evaluated on COMMIT
 Source:
 PERSON.LAST_NAME NOT null

Constraints referencing table PERSON:
No constraints found

SQL>
SQL> alter constraint ALL_UNIQUE
cont> deferrable initially deferred;
SQL>
SQL> alter constraint MUST_HAVE_LAST_NAME
cont> comment is 'We must assume all persons have a name'
cont> not deferrable;
SQL>
SQL> alter constraint MUST_BE_IN_PAST
cont> deferrable initially immediate;
SQL>
SQL> show table (constraint) PERSON
Information for table PERSON

Table constraints for PERSON:
ALL_UNIQUE
 Unique constraint
 Null values are considered distinct
 Table constraint for PERSON
 Evaluated on COMMIT
 Source:
 UNIQUE (last_name, first_name, birthday)

MUST_BE_IN_PAST
 Check constraint
 Column constraint for PERSON.BIRTHDAY

Oracle® Rdb for OpenVMS

8.4.11 New SET PAGE LENGTH Command for Interactive SQL 309

 Evaluated on each VERB
 Source:
 CHECK (birthday < current_date)

MUST_HAVE_LAST_NAME
 Not Null constraint
 Column constraint for PERSON.LAST_NAME
 Evaluated on UPDATE, NOT DEFERRABLE
 Comment: We must assume all persons have a name
 Source:
 PERSON.LAST_NAME NOT null

Constraints referencing table PERSON:
No constraints found

SQL>
SQL> commit;

8.4.13 DECLARE Variable Now Supports CHECK Constraint

Variables declared within a compound statement (BEGIN...END) can now include a CHECK constraint to
prevent out of range assignments to variables.

FORMAT

USAGE NOTES

The constraint−clause is applied to all variables listed in DECLARE. The keyword VALUE can be
used as a placeholder for the variable name with SQL correctly applying the constraint to all
variables.

•

Only the NOT DEFERRABLE and INITIALLY IMMEDIATE syntax is supported for variable
constraints. This is also the default if no constraint−attributes are specified.

•

Oracle® Rdb for OpenVMS

8.4.13 DECLARE Variable Now Supports CHECK Constraint 310

A runtime error is signaled if the constraint is violated. This error will include the name of the
variable.

•

When a DEFAULT is not used in the declare statement, the contents of the variable are undefined.
Therefore, any variable that uses a CHECK constraint must also provide a DEFAULT clause to
ensure that the variable's value is consistent.

•

Currently module global variables do not support constraints. This is planned for a future release of
Oracle Rdb.

•

The following example shows the use of a CHECK constraint to prevent illegal values being assigned to
control variables for a REPEAT loop. The singleton SELECT will actually return zero to the local variable P
which will cause a variable validation to fail.

SQL> begin
cont> declare :v integer = 0 check (value is not null);
cont> declare :p integer = 1 check (value is not null and value <> 0);
cont>
cont> repeat
cont> select count(*) into :p
cont> from employees
cont> where employee_id = '00000';
cont> set :v = :v + :p;
cont> until :v > 1000
cont> end repeat;
cont> end;
%RDB−E−NOT_VALID, validation on field P caused operation to fail

8.4.14 RMU/SHOW STATISTICS Active User Stall Messages
Sorted by Process ID

The RMU/SHOW STATISTICS "Active User Stall Messages" display now includes the ability to sort the list
of database users by process ID (OpenVMS PID). The Config option on the horizontal menu at the bottom of
the screen can be used to control how the information is to be sorted. By default, the display is unsorted.

8.4.15 RMU /REPAIR /INITIALIZE ONLY_LAREA_TYPE Keyword

This note was inadvertently left out of the Oracle Rdb Release 7.1.0 Release Notes.

A new ONLY_LAREA_TYPE keyword has been added to the RMU /REPAIR /INITIALIZE qualifier. This
keyword, along with the /NOSPAM and /NOABM qualifiers, allows only the logical area " type " field to be
updated in the AIP (area inventory pages). Avoiding SPAM page updates significantly improves performance
of this operation.

The RMU /UNLOAD /AFTER_JOURNAL and RMU /SHOW STATISTICS commands use the on−disk area
inventory pages (AIPs) to determine the appropriate "type" of each logical area. However, this logical area
information in the AIP is generally unknown for logical areas created prior to Oracle Rdb Release 7.0.1. If the
RMU /UNLOAD /AFTER_JOURNAL command cannot determine the logical area type for one or more AIP
entries, a warning message is displayed for each such area and may ultimately return logical dbkeys with a "0"
(zero) area number for records stored in mixed format storage areas.

In order to update the on disk logical area "type" in the AIP, the RMU /REPAIR utility must be used. The
/INITIALIZE = LAREA_PARAMETERS =optionfile qualifier can be used with the /TYPE qualifier. For

Oracle® Rdb for OpenVMS

8.4.14 RMU/SHOW STATISTICS Active User Stall Messages Sorted by Process ID 311

example, to repair the EMPLOYEES table of the MF_PERSONNEL database, you would create an options
file that contains the following line:

 EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the /AREA=name qualifier can be used to identify the specific storage areas that
are to be updated. For example, to repair the EMPLOYEES table of the MF_PERSONNEL database for the
EMPID_OVER storage area only, you would create an options file that contains the following line:

 EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The /TYPE qualifier specifies the type of a logical area. The following keywords are allowed:

TABLE − Specifies that the logical area is a data table. This would be a table created using the SQL
"CREATE TABLE" syntax.

•

B−TREE − Specifies that the logical area is a b−tree index. This would be an index created using the
SQL "CREATE INDEX TYPE IS SORTED" syntax.

•

HASH − Specifies that the logical area is a hash index. This would be an index created using the SQL
"CREATE INDEX TYPE IS HASHED" syntax.

•

SYSTEM − Specifies that the logical area is a system record which is used to identify hash buckets.
Users cannot explicitly create these types of logical areas. This type should NOT be used for the
RDB$SYSTEM logical areas. This type does NOT identify system relations.

•

BLOB − Specifies that the logical area is a blob (segmented string; list of byte varying) repository.•

There is no explicit error checking of the "type" specified for a logical area. However, an incorrect type may
cause the RMU /UNLOAD /AFTER_JOURNAL command to be unable to correctly return valid logical
dbkeys.

The ONLY_LAREA_TYPE keyword can be specified along with the /NOSPAM and /NOABM qualifiers to
cause only the logical area type field to be updated in the area inventory pages. All other actions specified in
the options file are ignored when ONLY_LAREA_TYPE is specified. By updating only the logical area type
in the AIP entries and not the SPAM pages, the RMU /REPAIR operation can be considerably faster.

8.4.16 RMU/SHOW STATISTICS Cluster Data Collection
Performance Enhancement

The RMU /SHOW STATISTICS Utility has been enhanced to perform "asynchronous" data gathering when
statistics are being displayed cluster−wide. Previously, a request for statistics was sent to the remote statistics
server and then the response was received synchronously. This was repeated for each node being monitored at
each data refresh cycle.

Now, the requests for information are sent to all nodes at once and then the replies are read as they become
available. This reduces some of the the delay associated with gathering statistics from multiple nodes in a
cluster.

8.4.17 RMU Extract has Enhanced Extract of Conditional
Expressions

This release of Oracle Rdb now includes support for the new ABS function by RMU Extract. RMU Extract

Oracle® Rdb for OpenVMS

8.4.16 RMU/SHOW STATISTICS Cluster Data Collection Performance Enhancement 312

decodes case expressions into ABS (absolute value) functions.

ABS (a) is equivalent to:

CASE
 WHEN a < 0 THEN −a
 ELSE a
END

In addition, similar forms of CASE expressions are also converted to ABS.

CASE
 WHEN a <= 0 THEN −a
 ELSE a
END

and

CASE
 WHEN a > 0 THEN a
 ELSE −a
END

and

CASE
 WHEN a >= 0 THEN a
 ELSE −a
END

It is possible that RMU Extract will change existing CASE expressions into this more compact syntax, even if
it was not originally coded as an ABS function call.

Oracle® Rdb for OpenVMS

8.4.16 RMU/SHOW STATISTICS Cluster Data Collection Performance Enhancement 313

8.5 Enhancements Provided in Oracle Rdb 7.0
Releases

8.5.1 Enhancements to Range Queries on SORTED Indexes

Bug 500856.

In previous versions of Oracle Rdb, the last index key fetched from the index partition during a range query
was used to determine if the scan was complete for the current range or if the next partition needed to be
scanned. This could result in unnecessary scans of subsequent index partitions if the last fetched value in the
SORTED index partition was not beyond the query range.

There are two important benefits to this enhancement. First, there is a reduction in I/O because fewer storage
areas need to be accessed. Second, because there is no need to access subsequent partitions, there are now a
smaller number of index partitions locked, thus allowing more concurrency. In cases where the next partition
is empty, it is possible for more than one partition to be scanned and locked.

Note: Some users may see no change in behavior because the last key value in the index partition may have
been beyond the query bounds or, in the case of a unique index definition with an exact match query, a direct
key lookup may result as shown below.

SQL> SELECT COUNT(*) FROM EMPLOYEES WHERE EMPLOYEE_ID = '00200';
Aggregate Index only retrieval of relation EMPLOYEES
 Index name IDX1 [1:1] Direct lookup

The following example shows a partitioned index and three queries. Each query is run in a different process
and attaches to the same database.

In previous releases of Oracle Rdb, the first query would lock AREA1 and AREA2 when it only required
scanning of AREA1. The second query would then lock AREA2 and AREA_OTHER when it only required
scanning of AREA2. Thus, the three queries could not execute concurrently.

The following example demonstrates that a smaller number of index partitions are locked:

SQL> CREATE INDEX EMP_INDEX ON EMPLOYEES (EMPLOYEE_ID)
cont> TYPE IS SORTED
cont> STORE USING (EMPLOYEE_ID)
cont> IN AREA1 WITH LIMIT OF ('00200')
cont> IN AREA2 WITH LIMIT OF ('00400')
cont> OTHERWISE IN AREA_OTHER;
SQL>
SQL> −− This query previously locked AREA1 and AREA2.
SQL> −− With the new algorithm, only AREA1 is locked.
SQL>
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID < ('00199');
6 rows deleted
SQL>
SQL> −− This query previously locked AREA2 and AREA_OTHER
SQL> −− With the new algorithm, only AREA2 is locked.
SQL>
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID > ('00201') AND

8.5 Enhancements Provided in Oracle Rdb 7.0 Releases 314

cont> EMPLOYEE_ID < ('00399');
5 rows deleted
SQL> −− This query locks AREA_OTHER
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID > ('00401');
23 rows deleted

The following example demonstrates fewer areas scanned with the new algorithm resulting in less I/O:

SQL> CREATE INDEX INDEX_EMP
cont> ON EMPLOYEES (EMPLOYEE_ID)
cont> TYPE IS SORTED
cont> STORE
cont> USING (EMPLOYEE_ID)
cont> IN UNIFORM1
cont> WITH LIMIT OF ('00100')
cont> IN UNIFORM2
cont> WITH LIMIT OF ('00200')
cont> IN UNIFORM3
cont> WITH LIMIT OF ('00300')
cont> OTHERWISE IN UNIFORM4;
SQL>
SQL> −− First, delete all employees records in UNIFORM1, UNIFORM2, UNIFORM3
SQL>
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID BETWEEN '00001' AND '00300';
12 rows deleted
SQL>
SQL>
SQL> −− Previously, the following query would result in reading from areas
SQL> −− UNIFORM1, UNIFORM2, UNIFORM3, and UNIFORM4. This occurred because
SQL> −− all partitions were scanned until an index key was found to end the sca`
SQL> −− With the new algorithm, only UNIFORM1 is read, resulting in less I/O.
SQL>
SQL> −− By turning on debug flags (STRATEGY, EXECUTION, INDEX_PARTITION),
SQL> −− the index partitions scanned are displayed.
SQL>
SQL> SET FLAGS 'STRATEGY,EXECUTION,INDEX_PARTITION';
SQL> SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID = '00020';
~S#0004
Leaf#01 FFirst EMPLOYEES Card=40
 BgrNdx1 INDEX_EMP [1:1] Fan=17
~E#0004.2 Start Area INDEX_EMP.UNIFORM1 (1) <−−− ** index partition scanned **
~E#0004.01(1) BgrNdx1 EofData DBKeys=0 Fetches=0+0 RecsOut=0 #Bufs=0
0 rows selected

The same query in previous versions of Rdb7, would result in the empty index partitions being scanned until
an index key was found to end the scan.

SQL> SET FLAGS 'STRATEGY,EXECUTION,INDEX_PARTITION';
SQL> SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID = '00020';
~S#0002
Leaf#01 FFirst EMPLOYEES Card=40
 BgrNdx1 INDEX_EMP [1:1] Fan=17
~E#0002.1 Start Area IDX1.UNIFORM1 (1) <−−− ** index partitions scanned **
~E#0002.1 Next Area IDX1.UNIFORM2 (2)
~E#0002.1 Next Area IDX1.UNIFORM3 (3)
~E#0002.1 Next Area IDX1.UNIFORM3 (4)
0 rows selected

Oracle® Rdb for OpenVMS

8.5 Enhancements Provided in Oracle Rdb 7.0 Releases 315

The new algorithm utilizes other data structures to determine that all the data has been returned for the query
and eliminates unnecessary index area scans based on the index partition values.

Note

In order to utilize the new index partition scanning algorithm, the logical name
RDMS$INDEX_PART_CHECK must be defined to 1. Otherwise, the default is to use the
old scanning behavior for partitioned indexes (the same as defining
RDMS$INDEX_PART_CHECK = 0 or not defining the logical at all).

This index partition enhancement is not supported for mapped indexes or descending indexes.

Oracle® Rdb for OpenVMS

8.5 Enhancements Provided in Oracle Rdb 7.0 Releases 316

Chapter 9
Oracle Rdb Continuous LogMiner
Oracle Rdb Continuous LogMinertm (sometimes referred to as CLM) is an extension to the existing Oracle
Rdb LogMiner feature. It allows online extraction of after−image journal data in "near−real" time. The
Continuous LogMiner functionality extends Oracle Rdb LogMiner operations from off−line backup .aij files
to live online AIJ information.

This chapter describes the Oracle Rdb LogMiner feature and the changes and enhancements made to Oracle
Rdb to support Continuous LogMiner functionality. It includes all of the LogMiner documentation that the
next release of the Oracle RMU Reference Manual will contain.

Chapter 9 Oracle Rdb Continuous LogMiner 317

9.1 RMU Unload After_Journal Command

Format

DESCRIPTION

The RMU Unload After_Journal command translates the binary data record contents of an
after−image journal (.aij) file into an output file. Data records for the specified tables for
committed transactions are extracted to an output stream (file, device, or application callback)
in the order that the transactions were committed.

Before you use the RMU Unload After_Journal command, you must enable the database for
LogMiner extraction. Use the RMU Set Logminer command to enable the LogMiner for Rdb

9.1 RMU Unload After_Journal Command 318

feature for the database. Before you use the RMU Unload After_Journal command with the
Continuous qualifier, you must enable the database for Continuous LogMiner extraction. See
Section 9.2 for more information.

Data records extracted from the .aij file are those records that transactions added, modified, or
deleted in base database tables. Index nodes, database metadata, segmented strings (BLOB),
views, COMPUTED BY columns, system relations, and temporary tables cannot be unloaded
from after−image journal files.

For each transaction, only the final content of a record is extracted. Multiple changes to a
single record within a transaction are condensed so that only the last revision of the record
appears in the output stream. You cannot determine which columns were changed in a data
record directly from the after−image journal file. In order to determine which columns were
changed, you must compare the record in the after−image journal file with a previous record.

The database used to create the after−image journal files being extracted must be available
during the RMU Unload After_Journal command execution. The database is used to obtain
metadata information (such as table names, column counts, record version, and record
compression) needed to extract data records from the .aij file. The database is read solely to
load the metadata and is then detached. Database metadata information can also be saved and
used in a later session. See the Save_MetaData and Restore_MetaData qualifiers for more
information.

If you use the Continuous qualifier, the database must be opened on the node where the
Continuous LogMiner process is running. The database is always used and must be available
for both metadata information and for access to the online after−image journal files. The
Save_MetaData and Restore_MetaData qualifiers are not permitted with the Continuous
qualifier.

When one or more .aij files and the Continuous qualifier are both specified on the RMU
Unload After_Journal command line, it is important that no .aij backup operations occur until
the Continuous LogMiner process has transitioned to online mode (where the active online
.aij files are being extracted). If you are using automatic .aij backups and wish to use the
Continuous LogMiner feature, Oracle recommends that you consider disabling the automatic
backup feature (ABS) and use manual .aij backups so that you can explicitly control when .aij
backup operations occur.

The after−image journal file or files are processed sequentially. All specified tables are
extracted in one pass through the after−image journal file.

As each transaction commit record is processed, all modified and deleted records for the
specified tables are sorted to remove duplicates. The modified and deleted records are then
written to the output streams. Transactions that were rolled back are ignored. Data records for
tables that are not being extracted are ignored. The actual order of output records within a
transaction is not predictable.

In the extracted output, records that were modified or added are returned as being modified. It
is not possible to distinguish between inserted and updated records in the output stream.
Deleted (erased) records are returned as being deleted. A transaction that modifies and deletes
a record generates only a deleted record. A transaction that adds a new record to the database
and then deletes it within the same transaction generates only a deleted record.

Oracle® Rdb for OpenVMS

9.1 RMU Unload After_Journal Command 319

The LogMiner process signals that a row has been deleted by placing a D in the
RDB$LM_ACTION field. The contents of the row at the instant before the delete operation
are recorded in the user fields of the output record. If a row was modified several times within
a transaction before being deleted, the output record contains only the delete indicator and the
results of the last modify operation. If a row is inserted and deleted in the same transaction,
only the delete record appears in the output.

Records from multiple tables can be output to the same or to different destination streams.
Possible output destination streams include the following:

File♦
OpenVMS Mailbox♦
OpenVMS Pipe♦
Direct callback to an application through a run−time activated shareable image♦

COMMAND PARAMETERS

root−file−spec

The root file specification of the database for the after−image journal file from which tables
will be unloaded. The default file extension is .rdb.

The database must be the same actual database that was used to create the after−image journal
files. The database is required so that the table metadata (information about data) is available
to the RMU Unload After_Journal command. In particular, the names and relation
identification of valid tables within the database are required along with the number of
columns in the table and the compression information for the table in various storage areas.

The RMU Unload After_Journal process attaches to the database briefly at the beginning of
the extraction operation in order to read the metadata. Once the metadata has been read, the
process disconnects from the database for the remainder of the operation unless the
Continuous qualifier is specified. The Continuous qualifier indicates that the extraction
operation is to run non−stop, and the process remains attached to the database.

aij−file−name

One or more input after−image journal backup files to be used as the source of the extraction
operation. Multiple journal files can be extracted by specifying a comma−separated list of file
specifications. Oracle RMU supports OpenVMS wildcard specifications (using the * and %
characters) to extract a group of files. A file specification beginning with the at (@) character
refers to an options file containing a list of after−image journal files (rather than the file
specification of an after−image journal itself). If you use the at character syntax, you must
enclose the at character and the file name in double quotation marks (for example, specify
aij−file−name as "@files.opt"). The default file extension is .aij.

COMMAND QUALIFIERS

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 320

Before=date−time

Specifies the ending time and date for transactions to be extracted. Based on the Select
qualifier, transactions that committed or started prior to the specified Before date are selected.
Information changed due to transactions that committed or started after the Before date is not
included in the output.

Continuous

NoContinuous

Causes the LogMiner process to attach to the database and begin extracting records in
"near−real" time. When the Continuous qualifier is specified, the RMU Unload After_Journal
command extracts records from the online after−image journal files of the database until it is
stopped via an external source (for example, Ctrl/y, STOP/ID, $FORCEX, or database
shutdown).

A database must be explicitly enabled for the Continuous LogMiner feature. To enable the
Continuous LogMiner feature, use the RMU Set Logminer command with the Enable and
Continuous qualifiers; to disable use of the Continuous LogMiner feature, use the RMU Set
Logminer command with the Enable and Nocontinuous qualifiers.

The output from the Continuous LogMiner process is a continuous stream of information. The
intended use of the Continuous LogMiner feature is to write the changes into an OpenVMS
mailbox or pipe, or to call a user−supplied callback routine. Writing output to a disk file is
completely functional with the Continuous LogMiner feature, however, no built−in
functionality exists to prevent the files from growing indefinitely.

It is important that the callback routine or processing of the mailbox be very responsive. If the
user−supplied callback routine blocks, or if the mailbox is not being read fast enough and
fills, the RMU Unload After_Journal command will stall. The Continuous LogMiner process
prevents backing up the after−image journal that it is currently extracting along with all
subsequent journals. If the Continuous LogMiner process is blocked from executing for long
enough, it is possible that all available journals will fill and will not be backed up.

When a database is enabled for the Continuous LogMiner feature, an AIJ "High Water" lock
(AIJHWM) is utilized to help coordinate and maintain the current .aij end−of−file location.
The lock value block for the AIJHWM lock contains the location of the highest written .aij
block. The RMU Unload After_Journal command with the Continuous qualifier polls the
AIJHWM lock to determine if data has been written to the .aij file and to find the highest
written block. If a database is not enabled for the Continuous LogMiner feature, there is no
change in locking behavior; the AIJHWM lock is not maintained and thus the Continuous
qualifier of the RMU Unload After_Journal command is not allowed.

In order to maintain the .aij end−of−file location lock, processes that write to the after−image
journal file must use the lock to serialize writing to the journal. When the Continuous
LogMiner feature is not enabled, processes instead coordinate allocating space in the
after−image journal file and can write to the file without holding a lock. The Continuous
LogMiner process requires that the AIJHWM lock be held during the .aij I/O operation. In
some cases, this can reduce overall throughput to the .aij file as it serves to reduce multiple

Oracle® Rdb for OpenVMS

Before=date−time 321

over−lapped I/O write operations by multiple processes.

The Save_Metadata and Restore_Metadata qualifiers are incompatible with the Continuous
qualifier.

Extend_Size=integer

Specifies the file allocation and extension quantity for output data files. The default
extension size is 1000 blocks. Using a larger value can help reduce output file fragmentation
and can improve performance when large amounts of data are extracted.

Format=options

If the Format qualifier is not specified, Oracle RMU outputs data to a fixed−length binary
flat file.

The format options are:

Format=Binary
If you specify the Format=Binary option, Oracle RMU does not perform any data
conversion; data is output in a flat file format with all data in the original binary state.
Table 9−1 describes the output fields and data types of an output record in Binary
format.

Table 9−1 Output Fields

Field Name Data Type
Byte

Length
Description

ACTION CHAR (1) 1

Indicates record state. "M"
indicates an insert or modify
action. "D" indicates a delete
action. "E" indicates stream
end−of−file (EOF) when a
callback routine is being
used. "P" indicates a value
from the command line
Parameter qualifier when a
callback routine is being
used (see Parameter
qualifier). "C" indicates
transaction commit
information when the
Include=Action=Commit
qualifier is specified.

RELATION_NAME CHAR (31) 31
Table name. Space padded
to 31 characters.

RECORD_TYPE
INTEGER
(Longword)

4
The Oracle Rdb internal
relation identifier.

♦

Oracle® Rdb for OpenVMS

Extend_Size=integer 322

DATA_LEN
SMALLINT
(Word)

2
Length, in bytes, of the data
record content.

NBV_LEN
SMALLINT
(Word)

2
Length, in bits, of the null
bit vector content.

DBK
BIGINT
(Quadword)

8

Records logical database
key. The database key is a
3−field structure containing
a 16−bit line number, a
32−bit page number and a
16−bit area number.

START_TAD
DATE VMS
(Quadword)

8
Date/time of the start of the
transaction.

COMMIT_TAD
DATE VMS
(Quadword)

8
Date/time of the
commitment of the
transaction.

TSN
BIGINT
(Quadword)

8

Transaction sequence
number of the transaction
that performed the record
operation.

RECORD_VERSION
SMALLINT
(Word)

2 Record version.

Record Data Varies
Actual data record field
contents.

Record NBV
BIT VECTOR
(array of bits)

Null bit vector. There is one
bit for each field in the data
record. If a bit value is 1, the
corresponding field is
NULL; if a bit value is 0, the
corresponding field is not
NULL and contains an
actual data value. The null
bit vector begins on a byte
boundary. Any extra bits in
the final byte of the vector
after the final null bit are
unused.

Format=Dump
If you specify the Format=Dump option, Oracle RMU produces an output format
suitable for viewing. Each line of Dump format output contains the column name
(including LogMiner prefix columns) and up to 200 bytes of the column data.
Unprintable characters are replaced with periods (.), and numbers and dates are
converted to text. NULL columns are indicated with the string "NULL". This format
is intended to assist in debugging; the actual output contents and formatting will
change in the future.

Format=Text
If you specify the Format=Text option, Oracle RMU converts all data to printable text
in fixed−length columns before unloading it. VARCHAR(n) strings are padded with
blanks when the specified string has fewer characters than n so that the resulting

♦

♦

Oracle® Rdb for OpenVMS

Extend_Size=integer 323

string is n characters long.
Format=(Delimited_Text [,delimiter−options])
If you specify the Format=Delimited_Text option, Oracle RMU applies delimiters to
all data before unloading it.
DATE VMS dates are output in the collatable time format, which is
yyyymmddhhmmsscc. For example, March 20, 1993 is output as:
1993032000000000.
Delimiter options are:

Prefix=string
Specifies a prefix string that begins any column value in the ASCII output
file. If you omit this option, the column prefix is a quotation mark (").

◊

Separator=string
Specifies a string that separates column values of a row. If you omit this
option, the column separator is a single comma (,).

◊

Suffix=string
Specifies a suffix string that ends any column value in the ASCII output file.
If you omit this option, the column suffix is a quotation mark (").

◊

Terminator=string
Specifies the row terminator that completes all the column values
corresponding to a row. If you omit this option, the row terminator is the end
of the line.

◊

Null=string
Specifies a string that, when found in the database column, is unloaded as
"NULL" in the output file.
The Null option can be specified on the command line as any one of the
following:

A quoted string⋅
An empty set of double quotes ("")⋅
No string⋅

The string that represents the null character must be quoted on the Oracle
RMU command line. You cannot specify a blank space or spaces as the null
character. You cannot use the same character for the Null value and other
Delimited_Text options.

◊

Note

The values for each of the strings specified in the delimiter options
must be enclosed within quotation marks. Oracle RMU strips these
quotation marks while interpreting the values. If you want to
specify a quotation mark (") as a delimiter, specify a string of four
quotation marks. Oracle RMU interprets four quotation marks as
your request to use one quotation mark as a delimiter. For
example, Suffix= """".

Oracle RMU reads these quotation marks as follows:

The first quotation mark is stripped from the string.⋅
The second and third quotation mark are interpreted as
your request for one quotation mark (") as a delimiter.

⋅

The fourth quotation mark is stripped.⋅

♦

Oracle® Rdb for OpenVMS

Extend_Size=integer 324

This results in one quotation mark being used as a delimiter.

Furthermore, if you want to specify a quotation mark as part of the
delimited string, you must use two quotation marks for each
quotation mark that you want to appear in the string. For example,
Suffix= "**""**" causes Oracle RMU to use a delimiter of **"**.

Include=Action=include−type

Specifies if deleted or modified records or transaction commit information is to be extracted
from the after−image journal. The following keywords can be specified:

Commit
NoCommit
If you specify Commit, a transaction commit record is written to each output stream
as the final record for each transaction. The commit information record is written to
output streams after all other records for the transaction have been written. The
default is NoCommit.
Because output streams are created with a default file name of the table being
extracted, it is important to specify a unique file name on each occurrence of the
output stream. The definition of "unique" is such that when you write to a
non−file−oriented output device (such as a pipe or mailbox), you must be certain to
specify a specific file name on each output destination. This means that rather than
specifying Output=MBA1234: for each output stream, you should use
Output=MBA1234:MBX, or any file name that is the same on all occurrences of
MBA1234:.
Failure to use a specific file name can result in additional, and unexpected, commit
records being returned. However, this is generally a restriction only when using a
stream−oriented output device (as opposed to a disk file).
The binary record format is based on the standard LogMiner output format. However,
some fields are not used in the commit action record. The binary format and contents
of this record are shown in Table 9−2. This record type is written for all output data
formats.

Table 9−2 Commit Record Contents

Field
Length (in

bytes)
Contents

ACTION 1 "C"

RELATION 31 Zero

RECORD_TYPE 4 Zero

DATA_LEN 2
Length of RM_TID_LEN, AERCP_LEN,
RM_TID, AERCP

NBV_LEN 2 Zero

TID 4 Transaction (Attach) ID

PID 4 Process ID

♦

Oracle® Rdb for OpenVMS

Include=Action=include−type 325

START_TAD 8 Transaction Start Time/Date

COMMIT_TAD 8 Transaction Commit Time/Date

TSN 8 Transaction ID

RM_TID_LEN 4 Length of the Global TID

AERCP_LEN 4 Length of the AERCP information

RM_TID RM_TID_LEN Global TID

AERCP AERCP_LEN Restart Control Information

When the original transaction took part in a distributed, two−phase transaction, the
RM_TID component is the Global transaction manager (XA or DDTM) unique
transaction ID. Otherwise, this field contains binary zeroes.
The AIJ Extract Recovery Control Point (AERCP) information is used to uniquely
identify this transaction within the scope of the database and after−image journal
files. It contains the .aij sequence number, VBN and TSN of the last "Micro Quiet
Point", and is used by the Continuous LogMiner process to restart a particular point
in the journal sequence.
Delete
NoDelete
If you specify Delete, pre−deletion record contents are extracted from the aij file. If
you specify NoDelete, no pre−deletion record contents are extracted. The default is
Delete.

♦

Modify
NoModify
If you specify Modify, modified or added record contents are extracted from the .aij
file. If you specify NoModify, then no modified or added record contents are
extracted. The default is Modify.

♦

IO_Buffers=integer

Specifies the number of I/O buffers used for output data files. The default number of buffers
is two, which is generally adequate. With sufficiently fast I/O subsystem hardware, additional
buffers may improve performance. However, using a larger number of buffers will also
consume additional virtual memory and process working set.

Log

Nolog

Specifies that the extraction of the .aij file is be reported to SYS$OUTPUT or the destination
specified with the Output qualifier. When activity is logged, the output from the Log qualifier
provides the number of transactions committed or rolled back. The default is the setting of the
DCL VERIFY flag, which is controlled by the DCL SET VERIFY command.

Options=options−list

The following options can be specified:

File=file−spec♦

Oracle® Rdb for OpenVMS

IO_Buffers=integer 326

An options file contains a list of tables and output destinations. The options file can
be used instead of, or along with, the Table qualifier to specify the tables to be
extracted. Each line of the options file must specify a table name prefixed with
"Table=". After the table name, the output destination is specified as either
"Output=", or "Callback_Module=" and "Callback_Routine=", for example:

TABLE=tblname,OUTPUT=outfile
TABLE=tblname,CALLBACK_MODULE=image,CALLBACK_ROUTINE=routine

You can use the Record_Definition=file−spec option from the Table qualifier to
create a record definition file for the output data. The default file type is .rrd; the
default file name is the name of the table.
You can use the Table_Definition=file−spec option from the Table qualifier to create
a file that contains an SQL statement that creates a table to hold transaction data. The
default file type is .sql; the default file name is the name of the table.
Each option in the Options=File qualifier must be fully specified (no abbreviations
are allowed) and followed with an equal sign (=) and a value string. The value string
must be followed by a comma or the end of a line. Continuation lines can be specified
by using a trailing dash. Comments are indicated by using the exclamation point (!)
character.
You can use the asterisk (*) and the percent sign (%) wildcard characters in the table
name specification to select all tables that satisfy the components you specify. The
asterisk matches zero or more characters; the percent sign matches a single character.
For table name specifications that contain wild card characters, if the first character of
the string is a pound sign (#), the wildcard specification is changed to a "not
matching" comparison. This allows exclusion of tables based on a wildcard
specification. The pound sign designation is only evaluated when the table name
specification contains an asterisk or percent sign.
For example, a table name specification of "#FOO%" indicates that all table names
that are four characters long and do not start with the string "FOO" are to be selected.
Shared_Read
Specifies that the input after−image journal backup files are to be opened with an
RMS shared locking specification.

♦

Dump
Specifies that the contents of an input metadata file are to be formatted and displayed.
Typically, this information is used as a debugging tool.

♦

Order_AIJ_Files

NoOrder_AIJ_Files

By default, after−image journal files are processed in the order that they are presented to the
RMU Unload After_Journal command. The Order_AIJ_Files qualifier specifies that the input
after−image journal files are to be processed in increasing order by sequence number. This
can be of benefit when you use wildcard (* or %) processing of a number of input files. The
.aij files are each opened, the first block is read (to determine the sequence number), and the
files are closed prior to the sorting operation.

Oracle® Rdb for OpenVMS

Order_AIJ_Files 327

Output=file−spec

Redirects the log and trace output (selected with the Log and Trace qualifiers) to the named
file. If this qualifier is not specified, the output generated by the Log and Trace qualifiers,
which can be voluminous, is displayed to SYS$OUTPUT.

Parameter=character−strings

Specifies one or more character strings that are concatenated together and passed to the
callback routine upon startup.

For each table that is associated with a user−supplied callback routine, the callback routine is
called with two parameters: the length of the Parameter record and a pointer to the Parameter
record. The binary format and contents of this record are shown in Table 9−3.

Table 9−3 Parameter Record Contents

Field Length (in bytes) Contents

ACTION 1 "P"

RELATION 31 Relation name

RECORD_TYPE 4 Zero

DATA_LEN 2 Length of parameter string

NBV_LEN 2 Zero

LDBK 8 Zero

START_TAD 8 Zero

COMMIT_TAD 8 Zero

TSN 8 Zero

DATA ? Variable length parameter string content

Restart=restart−point

Specifies an AIJ Extract Restart Control Point (AERCP) that indicates the location to begin
the extraction. The AERCP indicates the transaction sequence number (TSN) of the last
extracted transaction along with a location in the .aij file where a known "Micro−quiet point"
exists.

When the Restart qualifier is not specified and no input after−image journal files are specified
on the command line, the Continuous LogMiner process starts extracting at the beginning of
the earliest modified online after−image journal file.

When formatted for text display, the AERCP structure consists of the six fields (the MBZ
field is excluded) displayed as unsigned integers separated by dashes; for example,
"1−28−12−7−3202−3202".

Oracle® Rdb for OpenVMS

Output=file−spec 328

Restore_Metadata=file−spec

Specifies that the RMU Unload After_Journal command is to read database metadata
information from the specified file. The Database parameter is required but the database itself
is not accessed when the Restore_Metadata qualifier is specified. The default file type is
.metadata. The Continuous qualifier is not allowed when the Restore_Metadata qualifier is
present.

Because the database is not available when the Restore_Metadata qualifier is specified,
certain database−specific actions cannot be taken. For example, checks for after−image
journaling are disabled. Because the static copy of the metadata information is not updated as
database structure and table changes are made, it is important to make sure that the metadata
file is saved after database DML operations.

When the Restore_Metadata qualifier is specified, additional checks are made to ensure that
the after−image journal files were created using the same database that was used to create the
metadata file. These checks provide additional security and help prevent accidental
mismatching of files.

Save_Metadata=file−spec

Specifies that the RMU Unload After_Journal command is to write metadata information to
the named file. The Continuous, Restore_Metadata, Table, and Options=file qualifiers and the
aij−file−name parameter are not allowed when the Save_Metadata qualifier is present. The
default file type is .metadata.

Select=selection−type

Specifies if the date and time of the Before and Since qualifiers refer to transaction start time
or transaction commit time.

The following options can be specified as the selection−type of the Select qualifier:

Commit_Transaction
Specifies that the Before and Since qualifiers select transactions based on the time of
the transaction commit.

Start_Transaction
Specifies that the Before and Since qualifiers select transactions based on the time of
the transaction start.

♦

♦

The default for date selection is Commit_Transaction.

Since=date−time

Specifies the starting time for transactions to be extracted. Depending on the value specified
in the Select qualifier, transactions that committed or started on or after the specified Since
date are selected. Information from transactions that committed or started prior to the
specified Since date is not included in the output.

Oracle® Rdb for OpenVMS

Restore_Metadata=file−spec 329

Sort_Workfiles=integer

Specifies the number of sort work files. The default number of sort work files is two. When
large transactions are being extracted, using additional sort work files may improve
performance by distributing I/O loads over multiple disk devices. Use the SORTWORKn
(where n is a number from 0 to 9) logical names to specify the location of the sort work files.

Statistics_Interval=integer

Specifies that statistics are to be displayed at regular intervals so that you can evaluate the
progress of the unload operation.

The displayed statistics include:

Elapsed time♦
CPU time♦
Buffered I/O♦
Direct I/O♦
Page faults♦
Number of records unloaded for a table♦
Total number of records extracted for all tables♦

If the Statistics_Interval qualifier is specified, the default interval is 60 seconds. The
minimum value is one second. If the unload operation completes successfully before the first
time interval has passed, you will receive an informational message on the number of files
unloaded. If the unload operation is unsuccessful before the first time interval has passed, you
will receive error messages and statistics on the number of records unloaded.

At any time during the unload operation, you can press Ctrl/T to display the current statistics.

Table=(Name=table−name, table−options)

Specifies the name of a table to be unloaded and an output destination. The table−name must
be a table within the database. Views, indexes, and system relations may not be unloaded
from the after−image journal file.

The asterisk (*) and the percent sign (%) wildcard characters can be used in the table name
specification to select all tables that satisfy the components you specify. The asterisk matches
zero or more characters and the percent sign matches a single character.

For table name specifications that contain wild card characters, if the first character of the
string is a pound sign (#), the wildcard specification is changed to a "not matching"
comparison. This allows exclusion of tables based on a wildcard specification. The pound
sign designation is only evaluated when the table name specification contains an asterisk or
percent sign.

For example, a table name specification of "#FOO%" indicates that all table names that are
four characters long and do not start with the string "FOO" are to be selected.

The following table−options can be specified with the Table qualifier:

Oracle® Rdb for OpenVMS

Sort_Workfiles=integer 330

Callback_Module=image−name, Callback_Routine=routine−name
The LogMiner process uses the OpenVMS library routine
LIB$FIND_IMAGE_SYMBOL to activate the specified shareable image and locate
the specified entry point routine name. This routine is called with each extracted
record. A final call is made with the Action field set to "E" to indicate the end of the
output stream. These options must be specified together.

♦

Control
Use the Control table option to produce output files that can be used by SQL*Loader
to load the extracted data into an Oracle database. This option must be used in
conjunction with fixed text format for the data file. The Control table option can be
specified on either the command line or in an options file.

♦

Output=file−spec
If an Output file specification is present, unloaded records are written to the specified
location.

♦

Record_Definition=file−spec
The Record_Definition=file−spec option can be used to create a record definition file
for the output data. The default file type is .rrd; the default file name is the name of
the table.

♦

Table_Definition=file−spec
You can use the Table_Definition=file−spec option to create a file that contains an
SQL statement that creates a table to hold transaction data. The default file type is
.sql; the default file name is the name of the table.

♦

Unlike other qualifiers where only the final occurrence of the qualifier is used by an
application, the Table qualifier can be specified multiple times for the RMU Unload
After_Journal command. Each occurrence of the Table qualifier must specify a different
table.

Trace

NoTrace

Specifies that the unloading of the .aij file be traced. The default is Notrace. When the unload
operation is traced, the output from the Trace qualifier identifies transactions in the .aij file by
TSNs and describes what Oracle RMU did with each transaction during the unload process.
You can specify the Log qualifier with the Trace qualifier.

USAGE NOTES

To use the RMU Unload After_Journal command for a database, you must have the
RMU$DUMP privilege in the root file access control list (ACL) for the database or
the OpenVMS SYSPRV or BYPASS privilege.

♦

Oracle Rdb after−image journaling protects the integrity of your data by recording all
changes made by committed transactions to a database in a sequential log or journal
file. Oracle Corporation recommends that you enable after−image journaling to
record your database transaction activity between full backup operations as part of
your database restore and recovery strategy. In addition to LogMiner for Rdb, the
after−image journal file is used to enable several database performance enhancements
such as the fast commit, row cache, and hot standby features.

♦

When the Continuous qualifier is not specified, you can only extract changed records
from a backup copy of the after−image journal files. You create this file using the

♦

Oracle® Rdb for OpenVMS

Trace 331

RMU Backup After_Journal command.
You cannot extract from an .aij file that has been optimized with the RMU Optimize
After_Journal command.
As part of the extraction process, Oracle RMU sorts extracted journal records to
remove duplicate record updates. Because .aij file extraction uses the OpenVMS
Sort/Merge Utility (SORT/MERGE) to sort journal records for large transactions, you
can improve the efficiency of the sort operation by changing the number and location
of the work files used by SORT/MERGE. The number of work files is controlled by
the Sort_Workfiles qualifier of the RMU Unload After_Journal command. The
allowed values are 1 through 10 inclusive, with a default value of 2. The location of
these work files can be specified with device specifications, using the SORTWORKn
logical name (where n is a number from 0 to 9). See the OpenVMS documentation set
for more information on using SORT/MERGE. See the Oracle Rdb7 Guide to
Database Performance and Tuning for more information on using these Oracle Rdb
logical names.

♦

When extracting large transactions, the RMU Unload After_Journal command may
create temporary work files. You can redirect the .aij rollforward temporary work
files to a different disk and directory location than the current default directory by
assigning a different directory to the RDM$BIND_AIJ_WORK_FILE logical name
in the LNM$FILE_DEV name table. This can help to alleviate I/O bottlenecks that
might occur on the default disk.

♦

You can specify a search list by defining logicals RDB$BIND_AIJ_WORK_FILE1,
RDB$BIND_AIJ_WORK_FILE2, ... RDB$BIND_AIJ_WORK_FILEn, with each
logical pointing to a different device or directory. The numbers must start with 1 and
increase sequentially without any gaps. When an AIJ file cannot be created due to a
"device full" error, Oracle Rdb looks for the next device in the search list by
translating the next sequential work file logical. If RDB$BIND_AIJ_WORK_FILE is
defined, it is used first.

♦

The RMU Unload After_Journal command can read either a backed up .aij file on
disk or a backed up .aij file on tape that is in the Old_File format.

♦

You can select one or more tables to be extracted from an after−image journal file.
All tables specified by the Table qualifier and all those specified in the Options file
are combined to produce a single list of output streams. A particular table can be
specified only once. Multiple tables can be written to the same output destination by
specifying the exact same output stream specification (that is, by using an identical
file specification).

♦

At the completion of the unload operation, RMU creates a number of DCL symbols
that contain information about the extraction statistics. For each table extracted, RMU
creates the following symbols:

RMU$UNLOAD_DELETE_COUNT_tablename◊
RMU$UNLOAD_MODIFY_COUNT_tablename◊
RMU$UNLOAD_OUTPUT_tablename◊

The tablename component of the symbol is the name of the table. When multiple
tables are extracted in one operation, multiple sets of symbols are created. The value
for the symbols RMU$UNLOAD_MODIFY_COUNT_tablename and
RMU$UNLOAD_DELETE_COUNT_tablename is a character string containing the
number of records returned for modified and deleted rows. The
RMU$UNLOAD_OUTPUT_tablename symbol is a character string indicating the
full file specification for the output destination, or the shareable image name and
routine name when the output destination is an application callback routine.

♦

Oracle® Rdb for OpenVMS

Trace 332

When you use the Callback_Module and Callback_Routine option, you must supply a
shareable image with a universal symbol or entry point for the LogMiner process to
be able to call your routine. See the OpenVMS documentation discussing the Linker
utility for more information about creating shareable images.

♦

Your Callback_Routine is called once for each output record. The Callback_Routine
is passed two parameters:

The length of the output record, by longword value◊
A pointer to the record buffer◊

The record buffer is a data structure of the same fields and lengths written to an
output destination.

♦

Because the Oracle RMU image is installed as a known image, your shareable image
must also be a known image. Use the OpenVMS Install Utility to make your
shareable image known. You may wish to establish an exit handler to perform any
required cleanup processing at the end of the extraction.

♦

Segmented string data (BLOB) cannot be extracted using the LogMiner process.
Because the segmented string data is related to the base table row by means of a
database key, there is no convenient way to determine what data to extract.
Additionally, the data type of an extracted column is changed from LIST OF BYTE
VARYING to BIGINT. This column contains the DBKEY of the original BLOB
data. Therefore, the contents of this column should be considered unreliable.
However, the field definition itself is extracted as a quadword integer representing the
database key of the original segmented string data. In generated table definition or
record definition files, a comment is added indicating that the segmented string data
type is not supported by the LogMiner for Rdb feature.

♦

Records removed from tables using the SQL TRUNCATE TABLE statement are not
extracted. The SQL TRUNCATE TABLE statement does not journal each individual
data record being removed from the database.

♦

Records removed from tables using the SQL ALTER DATABASE command with
the DROP STORAGE AREA clause and CASCADE keyword are not extracted. Any
data deleted by this process is not journaled.

♦

Records removed by dropping tables using the SQL DROP TABLE statement are not
extracted. The SQL DROP TABLE statement does not journal each individual data
record being removed from the database.

♦

When the RDMS$CREATE_LAREA_NOLOGGING logical is defined, DML
operations are not available for extraction between the time the table is created and
when the transaction is committed.

♦

Tables that use the vertical record partitioning (VRP) feature cannot be extracted
using the LogMiner feature. LogMiner software currently does not detect these
tables. A future release of Oracle Rdb will detect and reject access to vertically
partitioned tables.

♦

In binary format output, VARCHAR fields are not padded with spaces in the output
file. The VARCHAR data type is extracted as a 2−byte count field and a fixed−length
data field. The 2−byte count field indicates the number of valid characters in the
fixed−length data field. Any additional contents in the data field are unpredictable.

♦

You cannot extract changes to a table when the table definition is changed within an
after−image journal file. Data definition language (DDL) changes to a table are not
allowed within an .aij file being extracted. All records in an .aij file must be the
current record version. If you are going to perform DDL operations on tables that you
wish to extract using the LogMiner for Rdb, you should:

Back up your after−image journal files.1.

♦

Oracle® Rdb for OpenVMS

Trace 333

Extract the .aij files using the RMU Unload After_Journal command.2.
Make the DDL changes.3.

Do not use the OpenVMS Alpha High Performance Sort/Merge utility (selected by
defining the logical name SORTSHR to SYS$SHARE:HYPERSORT) when using
the LogMiner feature. HYPERSORT supports only a subset of the library sort
routines that LogMiner requires. Make sure that the SORTSHR logical name is not
defined to HYPERSORT.

♦

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE

You can specify input backup after−image journal files along with the Continuous
qualifier from the command line. The specified after−image journal backup files are
processed in an offline mode. Once they have been processed, the RMU Unload
After_Journal command switches to "online" mode and the active online journals are
processed.

♦

When no input after−image journal files are specified on the command line, the
Continuous LogMiner starts extracting at the beginning of the earliest modified
online after−image journal file. The Restart= qualifier can be used to control the first
transaction to be extracted.

♦

The Continuous LogMiner requires fixed−size circular after−image journals.♦
An after−image journal file cannot be backed up if there are any Continuous
LogMiner checkpoints in the aij file. The Continuous LogMiner moves its checkpoint
to the physical end−of−file for the online .aij file that it is extracting.

♦

In order to ensure that all records have been written by all database users, Continuous
LogMiner processes do not switch to the next live journal file until it has been written
to by another process. Live journals should not be backed up while the Continuous
LogMiner process is processing a list of .aij backup files.

♦

If backed up after−image journal files are specified on the command line and the
Continuous qualifier is specified, the journal sequence numbers must ascend directly
from the backed up journal files to the online journal files.
In order to preserve the after−image journal file sequencing as processed by the RMU
Unload After_Journal /Continuous command, it is important that no after−image
journal backup operations are attempted between the start of the command and when
the Continuous LogMiner process reaches the live online after−image journals.

♦

You can run multiple Continuous LogMiner processes at one time on a database.
Each Continuous LogMiner process acts independently.

♦

The Continuous LogMiner reads the live after−image journal file just behind writers
to the journal. This will likely increase the I/O load on the disk devices where the
journals are located. The Continuous LogMiner attempts to minimize unneeded
journal I/O by checking a "High Water Mark" lock to determine if the journal has
been written to and where the highest written block location is located.

♦

Vertically partitioned tables cannot be extracted.♦

EXAMPLES

Example 1

The following example unloads the EMPLOYEES table from the .aij backup file
MFP.AIJBCK.

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 334

RMU /UNLOAD /AFTER_JOURNAL MFP.RDB MFP.AIJBCK −
 /TABLE = (NAME = EMPLOYEES, OUTPUT = EMPLOYEES.DAT)

Example 2

The following example simultaneously unloads the SALES, STOCK, SHIPPING, and
ORDERS tables from the .aij backup files MFS.AIJBCK_1−JUL−1999 through
MFS.AIJBCK_3−JUL−1999. Note that the input .aij backup files are processed sequentially
in the order specified.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB −
 MFS.AIJBCK_1−JUL−1999, −
 MFS.AIJBCK_2−JUL−1999, −
 MFS.AIJBCK_3−JUL−1999 −
 /TABLE = (NAME = SALES, OUTPUT = SALES.DAT) −
 /TABLE = (NAME = STOCK, OUTPUT = STOCK.DAT) −
 /TABLE = (NAME = SHIPPING, OUTPUT = SHIPPING.DAT) −
 /TABLE = (NAME = ORDER, OUTPUT = ORDER.DAT)

Example 3

Use the Before and Since qualifiers to unload data based on a time range. The following
example extracts changes made to the PLANETS table by transactions that committed
between 1−SEP−1999 at 14:30 and 3−SEP−1999 at 16:00.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB MFS.AIJBCK −
 /TABLE = (NAME = PLANETS, OUTPUT = PLANETS.DAT) −
 /BEFORE = "3−SEP−1999 16:00:00.00" −
 /SINCE = "1−SEP−1999 14:30:00.00"

Example 4

The following example simultaneously unloads the SALES and STOCK tables from all .aij
backup files that match the wildcard specification MFS.AIJBCK_1999−07−*. The input .aij
backup files are processed sequentially in the order returned from the file system.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB −
 MFS.AIJBCK_1999−07−* −
 /TABLE = (NAME = SALES, OUTPUT = SALES.DAT) −
 /TABLE = (NAME = STOCK, OUTPUT = STOCK.DAT)

Example 5

The following example unloads the TICKER table from the .aij backup files listed in the file
called AIJ_BACKUP_FILES.DAT (note the double quotation marks surrounding the at (@)
character and the file specification). The input .aij backup files are processed sequentially.
The output records are written to the mailbox device called MBA127:. A separate program is
already running on the system, and it reads and processes the data written to the mailbox.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB −
 "@AIJ_BACKUP_FILES.DAT" −
 /TABLE = (NAME = TICKER, OUTPUT = MBA127:)

Example 6

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 335

You can use the RMU Unload After_Journal command followed by RMU Load commands to
move transaction data from one database into a change table in another database. You must
create a record definition (.rrd) file for each table being loaded into the target database. The
record definition files can be created by specifying the Record_Definition option on the Table
qualifier.

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK −
 /TABLE = (NAME = MYTBL, −
 OUTPUT = MYTBL.DAT, −
 RECORD_DEFINITION=MYLOGTBL) −
 /TABLE = (NAME = SALE, −
 OUTPUT=SALE.DAT, −
 RECORD_DEFINITION=SALELOGTBL)

$ RMU /LOAD WAREHOUSE.RDB MYLOGTBL MYTBL.DAT −
 /RECORD_DEFINITION = FILE = MYLOGTBL.RRD

$ RMU /LOAD WAREHOUSE.RDB SALELOGTBL SALE.DAT −
 /RECORD_DEFINITION = FILE = SALELOGTBL.RRD

Example 7

You can use an RMS file containing the record structure definition for the output file as an
input file to the RMU Load command. The record description uses the CDO record and field
definition format. This is the same format used by the RMU Load and RMU Unload
commands when the Record_Definition qualifier is used. The default file extension is .rrd.

The record definitions for the fields that the LogMiner process writes to the output .rrd file
are shown in the following table. These fields can be manually appended to a record
definition file for the actual user data fields being unloaded. The file can be used to load a
transaction table within a database. A transaction table is the output that the LogMiner
process writes to a table consisting of sequential transactions performed in a database.

DEFINE FIELD RDB$LM_ACTION DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD RDB$LM_RELATION_NAME DATATYPE IS TEXT SIZE IS 31.
DEFINE FIELD RDB$LM_RECORD_TYPE DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RDB$LM_DATA_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_NBV_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_DBK DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_START_TAD DATETYPE IS DATE
DEFINE FIELD RDB$LM_COMMIT_TAD DATATYPE IS DATE
DEFINE FIELD RDB$LM_TSN DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_RECORD_VERSION DATATYPE IS SIGNED WORD.

Example 8

Instead of using the Table qualifier, you can use an Options file to specify the table or tables
to be extracted, as shown in the following example.

$ TYPE TABLES.OPTIONS
TABLE=MYTBL, OUTPUT=MYTBL.DAT
TABLE=SALES, OUTPUT=SALES.DAT
$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK −
 /OPTIONS = FILE = TABLES.OPTIONS

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 336

Example 9

The following example unloads the EMPLOYEES table from the live database and writes all
change records to the MBA145 device. A separate program is presumed to be reading the
mailbox at all times and processing the records.

$ RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS MFP.RDB −
 /TABLE = (NAME = EMPLOYEES, OUTPUT = MBA145:)

Example 10

This example demonstrates unloading three tables (EMPLOYEES, SALES, and
CUSTOMERS) to a single mailbox. Even though the mailbox is not a file−oriented device,
the same file name is specified for each. This is required because the LogMiner process
defaults the file name to the table name. If the same file name is not explicitly specified for
each output stream destination, the LogMiner process assigns one mailbox channel for each
table. When the file name is the same for all tables, the LogMiner process detects this and
assigns only a single channel for all input tables.

$ DEFINE MBX$ LOADER_MBX:X
$ RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS MFP.RDB −
 /TABLE = (NAME = EMPLOYEES, OUTPUT = MBX$:) −
 /TABLE = (NAME = SALES, OUTPUT = MBX$:) −
 /TABLE = (NAME = CUSTOMERS, OUTPUT = MBX$:)

Example 11

In order to include transaction commit information, the /Include =Action =Commit qualifier
is specified in this example. Additionally, the EMPLOYEES and SALES tables are extracted
to two different mailbox devices (ready by separate processes). A commit record is written to
each mailbox after all changed records for each transaction have been extracted.

$ RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS MFP.RDB −
 /INCLUDE = ACTION = COMMIT −
 /TABLE = (NAME = EMPLOYEES, OUTPUT = LOADER_EMP_MBX:X) −
 /TABLE = (NAME = SALES, OUTPUT = LOADER_SAL_MBX:X)

Example 12

In this example, multiple input backup after−image journal files are supplied. The
Order_AIJ_Files qualifier specifies that the .aij files are to be processed in ascending order of
.aij sequence number (regardless of file name). Prior to the extraction operation, each input
file is opened and the .aij Open record is read. The .aij files are then opened and extracted,
one at a time, by ascending .aij sequence number.

$ RMU /UNLOAD /AFTER_JOURNAL /LOG /ORDER_AIJ_FILES −
 MFP.RDB *.AIJBCK −
 /TABLE = (NAME = C1, OUTPUT=C1.DAT)
%RMU−I−UNLAIJFL, Unloading table C1 to DGA0:[DB]C1.DAT;1
%RMU−I−LOGOPNAIJ, opened journal file DGA0:[DB]ABLE.AIJBCK;1
%RMU−I−AIJRSTSEQ, journal sequence number is "5"
%RMU−I−LOGOPNAIJ, opened journal file DGA0:[DB]BAKER.AIJBCK;1
%RMU−I−AIJRSTSEQ, journal sequence number is "4"

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 337

%RMU−I−LOGOPNAIJ, opened journal file DGA0:[DB]CHARLIE.AIJBCK;1
%RMU−I−AIJRSTSEQ, journal sequence number is "6"
%RMU−I−LOGOPNAIJ, opened journal file DGA0:[DB]BAKER.AIJBCK;1
%RMU−I−AIJRSTSEQ, journal sequence number is "4"
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 5
%RMU−I−LOGOPNAIJ, opened journal file DGA0:[DB]ABLE.AIJBCK;1
%RMU−I−AIJRSTSEQ, journal sequence number is "5"
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 6
%RMU−I−LOGOPNAIJ, opened journal file DGA0:[DB]CHARLIE.AIJBCK;1
%RMU−I−AIJRSTSEQ, journal sequence number is "6"
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 7
%RMU−I−LOGSUMMARY, total 7 transactions committed
%RMU−I−LOGSUMMARY, total 0 transactions rolled back
−−−
ELAPSED: 0 00:00:00.15 CPU: 0:00:00.08 BUFIO: 62 DIRIO: 19 FAULTS: 73
Table "C1" : 3 records written (3 modify, 0 delete)
Total : 3 records written (3 modify, 0 delete)

Example 13

The SQL record definitions for the fields that the LogMiner process writes to the output are
shown in the following example. These fields can be manually appended to the table creation
command for the actual user data fields being unloaded. Alternately, the Table_Definition
qualifier can be used with the Table qualifier or within an Options file to automatically create
the SQL definition file. This can be used to create a transaction table of changed data.

SQL> CREATE TABLE MYLOGTABLE (
cont> RDB$LM_ACTION CHAR,
cont> RDB$LM_RELATION_NAME CHAR (31),
cont> RDB$LM_RECORD_TYPE INTEGER,
cont> RDB$LM_DATA_LEN SMALLINT,
cont> RDB$LM_NBV_LEN SMALLINT,
cont> RDB$LM_DBK BIGINT,
cont> RDB$LM_START_TAD DATE VMS,
cont> RDB$LM_COMMIT_TAD DATE VMS,
cont> RDB$LM_TSN BIGINT,
cont> RDB$LM_RECORD_VERSION SMALLINT ...);

Example 14

The following example is the transaction table record definition (.rrd) file for the
EMPLOYEES table from the PERSONNEL database:

DEFINE FIELD RDB$LM_ACTION DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD RDB$LM_RELATION_NAME DATATYPE IS TEXT SIZE IS 31.
DEFINE FIELD RDB$LM_RECORD_TYPE DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RDB$LM_DATA_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_NBV_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_DBK DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_START_TAD DATATYPE IS DATE.
DEFINE FIELD RDB$LM_COMMIT_TAD DATATYPE IS DATE.
DEFINE FIELD RDB$LM_TSN DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_RECORD_VERSION DATATYPE IS SIGNED WORD.

DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD LAST_NAME DATATYPE IS TEXT SIZE IS 14.
DEFINE FIELD FIRST_NAME DATATYPE IS TEXT SIZE IS 10.
DEFINE FIELD MIDDLE_INITIAL DATATYPE IS TEXT SIZE IS 1.

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 338

DEFINE FIELD ADDRESS_DATA_1 DATATYPE IS TEXT SIZE IS 25.
DEFINE FIELD ADDRESS_DATA_2 DATATYPE IS TEXT SIZE IS 20.
DEFINE FIELD CITY DATATYPE IS TEXT SIZE IS 20.
DEFINE FIELD STATE DATATYPE IS TEXT SIZE IS 2.
DEFINE FIELD POSTAL_CODE DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD SEX DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD BIRTHDAY DATATYPE IS DATE.
DEFINE FIELD STATUS_CODE DATATYPE IS TEXT SIZE IS 1.

DEFINE RECORD EMPLOYEES.
 RDB$LM_ACTION .
 RDB$LM_RELATION_NAME .
 RDB$LM_RECORD_TYPE .
 RDB$LM_DATA_LEN .
 RDB$LM_NBV_LEN .
 RDB$LM_DBK .
 RDB$LM_START_TAD .
 RDB$LM_COMMIT_TAD .
 RDB$LM_TSN .
 RDB$LM_RECORD_VERSION .
 EMPLOYEE_ID .
 LAST_NAME .
 FIRST_NAME .
 MIDDLE_INITIAL .
 ADDRESS_DATA_1 .
 ADDRESS_DATA_2 .
 CITY .
 STATE .
 POSTAL_CODE .
 SEX .
 BIRTHDAY .
 STATUS_CODE .
END EMPLOYEES RECORD.

Example 15

The following C source code segment demonstrates the structure of a module that can be used
as a callback module and routine to process employee transaction information from the
LogMiner process. The routine, Employees_Callback, would be called by the LogMiner
process for each extracted record. The final time the callback routine is called, the
RDB$LM_ACTION field will be set to "E" to indicate the end of the output stream.

#include <stdio>
typedef unsigned char date_type[8];
typedef unsigned char dbkey_type[8];
typedef unsigned char tsn_type[8];

typedef struct {
 unsigned char rdb$lm_action;
 char rdb$lm_relation_name[31];
 unsigned int rdb$lm_record_type;
 unsigned short int rdb$lm_data_len;
 unsigned short int rdb$lm_nbv_len;
 dbkey_type rdb$lm_dbk;
 date_type rdb$lm_start_tad;
 date_type rdb$lm_commit_tad;
 tsn_type rdb$lm_tsn;
 unsigned short int rdb$lm_record_version;
 char employee_id[5];

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 339

 char last_name[14];
 char first_name[10];
 char middle_initial[1];
 char address_data_1[25];
 char address_data_2[20];
 char city[20];
 char state[2];
 char postal_code[5];
 char sex[1];
 date_type birthday;
 char status_code[1];
} transaction_data;

void employees_callback (unsigned int data_len, transaction_data
 data_buf)
{ .
 .
 .
 return;}

Use the C compiler (either :VAX C or DEC C) to compile this module. When linking this
module, the symbol EMPLOYEES_CALLBACK needs to be externalized in the shareable
image. Refer to the OpenVMS manual discussing the Linker utility for more information
about creating shareable images.

On OpenVMS Alpha systems, you can use a LINK command similar to the following:

$ LINK /SHAREABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
SYMBOL_VECTOR = (EMPLOYEES_CALLBACK = PROCEDURE)
<Ctrl/Z>

On OpenVMS VAX systems, you can use a LINK command similar to the following:

$ LINK /SHAREABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
UNIVERSAL = EMPLOYEES_CALLBACK
<Ctrl/Z>

Example 16

You can use triggers and a transaction table to construct a method to replicate table data from
one database to another using RMU Unload After_Journal and RMU Load commands. This
data replication method is based on transactional changes to the source table and requires no
programming. Instead, existing features of Oracle Rdb can be combined to provide this
functionality.

For this example, consider a simple customer information table called CUST with a unique
customer ID value, customer name, address, and postal code. Changes to this table are to be
moved from an OLTP database to a reporting database system on a periodic (perhaps nightly)
basis.

First, in the reporting database, a customer table of the same structure as the OLTP customer
table is created. In this example, this table is called RPT_CUST. It contains the same fields as
the OLTP customer table called CUST.

SQL> CREATE TABLE RPT_CUST

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 340

cont> CUST_ID INTEGER,
cont> CUST_NAME CHAR (50),
cont> CUST_ADDRESS CHAR (50),
cont> CUST_POSTAL_CODE INTEGER);

Next, a temporary table is created in the reporting database for the LogMiner−extracted
transaction data from the CUST table. This temporary table definition specifies ON
COMMIT DELETE ROWS so that data in the temporary table is deleted from memory at
each transaction commit. A temporary table is used because there is no need to journal
changes to the table.

SQL> CREATE GLOBAL TEMPORARY TABLE RDB_LM_RPT_CUST (
cont> RDB$LM_RECORD_TYPE INTEGER,
cont> RDB$LM_DATA_LEN SMALLINT,
cont> RDB$LM_NBV_LEN SMALLINT,
cont> RDB$LM_DBK BIGINT,
cont> RDB$LM_START_TAD DATE VMS,
cont> RDB$LM_COMMIT_TAD DATE VMS,
cont> RDB$LM_TSN BIGINT,
cont> RDB$LM_RECORD_VERSION SMALLINT,
cont> CUST_ID INTEGER,
cont> CUST_NAME CHAR (50),
cont> CUST_ADDRESS CHAR (50),
cont> CUST_POSTAL_CODE INTEGER) ON COMMIT DELETE ROWS;

For data to be populated in the RPT_CUST table in the reporting database, a trigger is created
for the RDB_LM_RPT_CUST transaction table. This trigger is used to insert, update, or
delete rows in the RPT_CUST table based on the transaction information from the OLTP
database for the CUST table. The unique CUST_ID field is used to determine if customer
records are to be modified or added.

SQL> CREATE TRIGGER RDB_LM_RPT_CUST_TRIG
cont> AFTER INSERT ON RDB_LM_RPT_CUST
cont>
cont> −− Modify an existing customer record
cont>
cont> WHEN (RDB$LM_ACTION = 'M' AND
cont> EXISTS (SELECT RPT_CUST.CUST_ID FROM RPT_CUST
cont> WHERE RPT_CUST.CUST_ID =
cont> RDB_LM_RPT_CUST.CUST_ID))
cont> (UPDATE RPT_CUST SET
cont> RPT_CUST.CUST_NAME = RDB_LM_RPT_CUST.CUST_NAME,
cont> RPT_CUST.CUST_ADDRESS =
cont> RDB_LM_RPT_CUST.CUST_ADDRESS,
cont> RPT_CUST.CUST_POSTAL_CODE =
cont> RDB_LM_RPT_CUST.CUST_POSTAL_CODE
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
cont> FOR EACH ROW
cont>
cont> −− Add a new customer record
cont>
cont> WHEN (RDB$LM_ACTION = 'M' AND NOT
cont> EXISTS (SELECT RPT_CUST.CUST_ID FROM RPT_CUST
cont> WHERE RPT_CUST.CUST_ID =
cont> RDB_LM_RPT_CUST.CUST_ID))
cont> (INSERT INTO RPT_CUST VALUES
cont> (RDB_LM_RPT_CUST.CUST_ID,
cont> RDB_LM_RPT_CUST.CUST_NAME,

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 341

cont> RDB_LM_RPT_CUST.CUST_ADDRESS,
cont> RDB_LM_RPT_CUST.CUST_POSTAL_CODE))
cont> FOR EACH ROW
cont>
cont> −− Delete an existing customer record
cont>
cont> WHEN (RDB$LM_ACTION = 'D')
cont> (DELETE FROM RPT_CUST
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
cont> FOR EACH ROW;

Within the trigger, the action to take (for example, to add, update, or delete a customer
record) is based on the RDB$LM_ACTION field (defined as D or M) and the existence of the
customer record in the reporting database. For modifications, if the customer record does not
exist, it is added; if it does exist, it is updated. For a deletion on the OLTP database, the
customer record is deleted from the reporting database.

The RMU Load command is used to read the output from the LogMiner process and load the
data into the temporary table where each insert causes the trigger to execute. The
Commit_Every qualifier is used to avoid filling memory with the customer records in the
temporary table because as soon as the trigger executes, the record in the temporary table is
no longer needed.

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB OLTP.AIJBCK −
 /TABLE = (NAME = CUST, −
 OUTPUT = CUST.DAT, −
 RECORD_DEFINITION = RDB_LM_RPT_CUST.RRD)

$ RMU /LOAD REPORT_DATABASE.RDB RDB_LM_RPT_CUST CUST.DAT −
 /RECORD_DEFINITION = FILE = RDB_LM_RPT_CUST.RRD −
 /COMMIT_EVERY = 1000

Example 17

The following example shows how to produce a control file that can be used by SQL*Loader
to load the extracted data into an Oracle database.

$ RMU/UNLOAD/AFTER TEST_DB TEST_DB_AIJ1_BCK −
 /FORMAT=TEXT −
 /TABLE=(NAME=TEST_TBL, −
 OUTPUT=LOGMINER_TEXT.TXT, −
 CONTROL=LOGMINER_CONTROL.CTL, −
 TABLE_DEFINITION=TEST_TBL.SQL)

This example produces the following control file. The control file is specific to a fixed length
record text file. NULLs are handled by using the NULLIF clause for the column definition
that references a corresponding null byte filler column. There is a null byte filler column for
each column in the underlying table but not for the LogMiner specific columns at the
beginning of the record. If a column is NULL, the corresponding RDB$LM_NBn filler
column is set to 1. VARCHAR columns are padded with blanks but the blanks are ignored by
default when the file is loaded by SQL*Loader. If you wish to preserve the blanks, you can
update the control file and add the "PRESERVE BLANKS" clause.

−− Control file for LogMiner transaction data 25−AUG−2000 12:15:50.47
−− From database table "TEST_DB"

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 342

LOAD DATA
INFILE 'DISK:[DIRECTORY]LOGMINER_TEXT.TXT;'
APPEND INTO TABLE 'RDB_LM_TEST_TBL'
(
RDB$LM_ACTION POSITION(1:1) CHAR,
RDB$LM_RELATION_NAME POSITION(2:32) CHAR,
RDB$LM_RECORD_TYPE POSITION(33:44) INTEGER EXTERNAL,
RDB$LM_DATA_LEN POSITION(45:50) INTEGER EXTERNAL,
RDB$LM_NBV_LEN POSITION(51:56) INTEGER EXTERNAL,
RDB$LM_DBK POSITION(57:76) INTEGER EXTERNAL,
RDB$LM_START_TAD POSITION(77:90) DATE "YYYYMMDDHHMISS",
RDB$LM_COMMIT_TAD POSITION(91:104) DATE "YYYYMMDDHHMISS",
RDB$LM_TSN POSITION(105:124) INTEGER EXTERNAL,
RDB$LM_RECORD_VERSION POSITION(125:130) INTEGER EXTERNAL,
TEST_COL POSITION(131:150) CHAR NULLIF RDB$LM_NB1 = 1,
RDB$LM_NB1 FILLER POSITION(151:151) INTEGER EXTERNAL
)

Oracle® Rdb for OpenVMS

USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE 343

9.2 RMU Set Logminer Command

Format

DESCRIPTION

Use this command to enable or disable LogMiner operations on an Oracle Rdb database.
When LogMiner is enabled, the Oracle Rdb database software writes additional information
to the after−image journal file when records are added, modified, and deleted from the
database. This information is used during the unload operation.

COMMAND PARAMETERS

root−file−spec

The root file specification of the database. The default file extension is .rdb.

COMMAND QUALIFIERS

Continuous

NoContinuous

Enables the database for the Continuous LogMiner feature when used in conjunction with the
Enable qualifier. Use the NoContinuous qualifier with the Enable qualifier to disable use of
the Continuous LogMiner feature.

The RMU Set Logminer /Disable command explicitly disables the Continuous LogMiner
feature as well as the base LogMiner functionality. To enable the Continuous LogMiner
feature again, the entire RMU Set Logminer /Enable /Continuous command must be used.

9.2 RMU Set Logminer Command 344

Disable

Specifies that LogMiner operations are to be disabled for the database. When LogMiner is
disabled, the Oracle Rdb software does not journal information required for LogMiner
operations. When LogMiner is disabled for a database, the RMU Unload After_Journal
command is not functional on that database.

Enable

Specifies that LogMiner operations are to be enabled for the database. When LogMiner is
enabled, the Oracle Rdb database software logs additional information to the after−image
journal file. This information allows LogMiner to extract records. The database must already
have after−image journaling enabled.

Log

Nolog

Specifies that the setting of the LogMiner state for the database be reported to
SYS$OUTPUT. The default is the setting of the DCL VERIFY flag, which is controlled by
the DCL SET VERIFY command.

USAGE NOTES

To use the RMU Set Logminer command, you must have the RMU$BACKUP,
RMU$RESTORE, or RMU$ALTER privilege in the root file access control list
(ACL) for the database or the OpenVMS SYSPRV or BYPASS privilege.

♦

The RMU Set Logminer command requires offline access to the database. The
database must be closed and no other users may be accessing the database.

♦

Execute a full database backup operation after issuing an RMU Set Logminer
command that displays the RMU−W−DOFULLBCK warning message. Immediately
after enabling LogMiner, you should perform a database after−image journal backup
using the RMU Backup After_Journal command.

♦

EXAMPLES

Example 1

The following example enables a database for LogMiner for Rdb operation.

$ RMU /SET LOGMINER /ENABLE OLTPDB.RDB

Oracle® Rdb for OpenVMS

Disable 345

9.3 RMU Dump /Header Command Enhanced
The RMU Dump /Header command has been enhanced to indicate the Continuous LogMiner enabled state. If
the LogMiner feature is enabled, an additional line output indicates the Continuous LogMiner state as follows:

 AIJ Journaling...
 − After−image journaling is enabled

.

.

.
 − LogMiner is enabled
 − Continuous LogMiner is enabled

9.3 RMU Dump /Header Command Enhanced 346

9.4 RMU Show Statistics Utility Enhanced
The RMU Show Statistics utility has been enhanced to include a LogMiner Information statistics screen. This
screen is available from the Journaling Information menu when the Continuous LogMiner feature is enabled
for a database. For each active process running the RMU Unload After_Journal /Continuous command, the
state of the process and the last accessed journal block are displayed.

The State information can be one of the following:

Table 9−4 Continuous LogMiner States

State Description

Inactive Processing has not yet completed initialization or is shutting down

Hibernating Waiting for after−image journal write activity

Polling
Sleep/poll state while waiting for after−image journal writing activity; after a short while, if no
after−image journal writing occurs, the Continuous LogMiner will enter the Hibernating state

Extracting Extracting changes from one or more transactions from the after−image journal

Because the AIJ Journal Information screen provides real−time information, the output is not recorded in the
binary output file produced using the Output qualifier. Consequently, this screen is not available when you
replay a binary file using the Input qualifier.

The RMU Show Statistics utility LogMiner Information screen also displays the current (last known)
after−image journal sequence number and end−of−file location on the current node. In a cluster environment,
it is possible that these numbers can vary from the actual last written location in the .aij file depending on
what node the last writer is running on.

The RMU Show Statistics utility LogMiner Information screen also includes a "Zoom" option to display
detailed information about a Continuous LogMiner process.

9.4 RMU Show Statistics Utility Enhanced 347

9.5 AERCP Format
The current format of the AIJ Extract Recovery Control Point (AERCP) is shown in Table 9−5, AERCP
Structure.

Table 9−5 AERCP Structure

Field Length Content

VERSION_NUMBER 1 Structure Version Number (currently 1)

STRUCTURE_LENGTH 1 Length of Structure (currently 28)

MBZ 2 Must be Zero

MQP_VNO 4 Micro−quiet−point VNO

MQP_VBN 4 Micro−quiet−point VBN

MQP_TSN 8 Micro−quiet−point TSN

LCP_TSN 8 Last extracted TSN

When formatted for text display, the AERCP structure consists of the six fields (the MBZ field is excluded)
displayed as unsigned integers separated by dashes as in the following example:

 1−28−12−7−3202−3202

The internal format of the AERCP structure will change in the future.

9.5 AERCP Format 348

Chapter 10
Documentation Corrections, Additions and Changes
This chapter provides corrections for documentation errors and omissions.

Chapter 10 Documentation Corrections, Additions and Changes 349

10.1 Documentation Corrections

10.1.1 Explanation of SQL$INT in a SQL Multiversion
Environment and How to Redefine SQL$INT

Bug 2500594

In an environment running multiple versions of Oracle Rdb, for instance Rdb V7.0 and Rdb V7.1, there are
now several varianted SQL images, such as SQL$70.EXE and SQL$71.EXE. However, SQL$INT.EXE is not
varianted but acts as a dispatcher using the translation of the logical name RDMS$VERSION_VARIANT to
activate the correct SQL runtime environment. This image is replaced when a higher version of Oracle Rdb is
installed. Thus, using the example above, when Rdb V7.1 is installed, SQL$INT.EXE will be replaced with
the V7.1 SQL$INT.EXE.

If an application is linked in this environment (using V7.1 SQL$INT) and the corresponding executable
deployed to a system running Oracle Rdb V7.0 multiversion only, the execution of the application may result
in the following error:

%IMGACT−F−SYMVECMIS, shareable image's symbol vector table mismatch

In order to avoid such a problem, the following alternative is suggested:

In the multiversion environment running both Oracle Rdb V7.0 and Oracle Rdb V7.1, run Oracle Rdb V7.0
multiversion by running the command procedures RDB$SETVER.COM 70 and RDB$SETVER RESET. This
will set up the necessary logical names and symbols that establish the Oracle Rdb V7.0 environment.

For example:

$ @SYS$LIBRARY:RDB$SETVER 70

Current PROCESS Oracle Rdb environment is version V7.0−63 (MULTIVERSION)
Current PROCESS SQL environment is version V7.0−63 (MULTIVERSION)
Current PROCESS Rdb/Dispatch environment is version V7.0−63 (MULTIVERSION)

$ @SYS$LIBRARY:RDB$SERVER RESET

Now run SQL and verify that the version is correct:

$ sql$
SQL> show version
Current version of SQL is: Oracle Rdb SQL V7.0−63

Define SQL$INT to point to the varianted SQL$SHR.EXE. Then, create an options file directing the linker to
link with this newly defined SQL$INT. An example follows:

$ DEFINE SQL$INT SYS$SHARE:SQL$SHR'RDMS$VERSION_VARIANT'.EXE
$ LINK TEST_APPL,SQL$USER/LIB,SYS$INPUT/option
SQL$INT/SHARE

10.1 Documentation Corrections 350

^Z

The executable is now ready to be deployed to the Oracle Rdb V7.0 multiversion environment and should run
successfully.

Please note that with each release of Oracle Rdb, new entry points are added to the SQL$INT shareable
image. This allows the implementation of new functionality. Therefore, applications linked with SQL$INT
from Oracle Rdb V7.1 cannot be run on systems with only Oracle Rdb V7.0 installed. This is because the
shareable image does not contain sufficient entry points.

The workaround presented here allows an application to explicitly link with the Oracle Rdb V7.0 version of
the image. Such applications are upward compatible and will run on Oracle Rdb V7.0 and Oracle Rdb V7.1.
The applications should be compiled and linked under the lowest version.

In environments where Oracle Rdb V7.1 is installed, this workaround is not required because the SQL$INT
image will dynamically activate the appropriate SQL$SHRxx image as expected.

10.1.2 Documentation Omitted Several Reserved Words

Bug 2319321

The following keywords are considered reserved words in Oracle Rdb Release 7.1.

UID•
CURRENT_UID•
SYSTEM_UID•
SESSION_UID•
RAW•
LONG•
DBKEY•
ROWID•
SYSDATE•

In particular, any column which has these names will be occluded by the keyword. i.e. selecting from column
UID will be interpreted as referencing the built in function UID and so return a different result.

The correction to this problem is to enable keyword quoting using SET QUOTING RULES 'SQL92' (or
'SQL99') and enclose the column name in quotations.

In addition, SQL will now generate a warning if these reserved words are used (unquoted) in CREATE and
ALTER operations.

10.1.3 Additional Usage Notes for ALTER INDEX

These notes were missing from the New and Changed Features Manual for Rdb V7.1:

The clauses REBUILD PARTITION, TRUNCATE PARTITION and BUILD PARTITION all leave
the index in build−pending state. This effectively disables maintenance on this index by forbidding
the use of INSERT, UPDATE or DELETE statements on the table.
This change to the table state allows multiple ALTER INDEX operations to be executed in parallel to

•

Oracle® Rdb for OpenVMS

10.1.2 Documentation Omitted Several Reserved Words 351

build or truncate the index partitions.
After all partitions have been built, a final ALTER INDEX ... MAINTENANCE IS ENABLED step
must be executed to make this index complete. If no other indices are in build−pending state then this
will also enable updates to the table.
The BUILD ALL and REBUILD ALL clauses automatically enable maintenance on the index when
all partitions are complete.
When the index is in build−pending state, the following warning is issued to remind the database
administrator that maintenance must be enabled.

SQL> alter index PERSON_INDEX_S
cont> rebuild partition P3;
%RDB−W−META_WARN, metadata successfully updated with the reported warning
−RDMS−W−IDXBLDPEND, index in build pending state − maintenance is disabled

Please note that this warning indicates that the ALTER INDEX was successful.

•

10.1.4 Using Databases from Releases Earlier Than V6.0

Bug 2383967

You cannot convert or restore databases earlier than V6.0 directly to V7.1. The RMU Convert command for
V7.1 supports conversions from V6.0 through V7.0 only. If you have a V3.0 through V5.1 database, you must
convert it to at least V6.0 and then convert it to V7.1. For example, if you have a V4.2 database, convert it
first to at least V6.0, then convert the resulting database to V7.1.

If you attempt to convert a database created prior to V6.0 directly to V7.1, Oracle RMU generates an error.

10.1.5 Clarification of PREPARE Statement Behavior

Bug 2581863

According to the Oracle Rdb7 SQL Reference Manual, Volume 3 page 7−227, when using a statement−id
parameter for PREPARE "if that parameter is an integer, then you must explicitly initialize that integer to zero
before executing the PREPARE statement".

This description is not correct and should be replaced with this information:

If the statement−id is non−zero and does not match any prepared statement (the id was stale or
contained a random value), then an error is raised:
%SQL−F−BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not prepared

1.

If the statement−id is non−zero, or the statement name is one that has previously been used and
matches an existing prepared statement, then that statement is automatically released prior to the
prepare of the new statement. Please refer to the RELEASE statement for further details.

2.

If the statement−id is zero or was automatically released, then a new statement−id is allocated and the
statement prepared.

3.

Please note that if you use statement−name instead of a statement−id−parameter then SQL will implicitly
declare an id for use by the application. Therefore, the semantics described apply similarly when using the

Oracle® Rdb for OpenVMS

10.1.4 Using Databases from Releases Earlier Than V6.0 352

statement−name. See the RELEASE statement for details.

10.1.6 CREATE OUTLINE Supports Trigger, Constraint, Column
and View Outlines

The syntax diagram for the following note was incorrect in the original documentation about it which was
Section 1.3.5 in the Oracle Rdb Release 7.1.0 Release Notes.

CREATE OUTLINE now supports direct outline creation for TRIGGERS and CONSTRAINTS, and partial
outlines for column expressions (COMPUTED BY and AUTOMATIC), and VIEW definitions.

The CREATE OUTLINE syntax has been enhanced to support the referencing of views, constraints, triggers
and columns. The name of the outline in these cases should match the name of the object so that Oracle Rdb
may locate the outline definition at runtime.

FORMAT

Oracle® Rdb for OpenVMS

10.1.6 CREATE OUTLINE Supports Trigger, Constraint, Column and View Outlines 353

USAGE NOTES

When CREATE OUTLINE ... ON TRIGGER is used then an outline for just the first compound
trigger action is created. In a future release, outlines for subsequent actions will be supported.

•

Partial outlines for view definitions may not be suitable for use in queries without providing more
details in the outline. This is shown in a later example.

•

CREATE OUTLINE ... ON COLUMN must reference a computed column, such as a table
COMPUTED BY, AUTOMATIC or view column that contains select expressions. The CREATE will
fail if no select expression is available.

•

The following example shows the outline created for the CURRENT_JOB view. Note that the access path for
JOB_HISTORY defaults to SEQUENTIAL and therefore is not the best choice for this view. This occurs
because the view normally queries with an EMPLOYEE_ID specified, which would cause the optimizer to
choose index access for the JOB_HISTORY table.

SQL> create outline CURRENT_JOB on view CURRENT_JOB;
SQL> show outline CURRENT_JOB
 CURRENT_JOB
 Source:

−− Rdb Generated Outline : 16−MAY−2001 15:11
create outline CURRENT_JOB
−− On view CURRENT_JOB
id '9C6D98DAAF09A3E1796F7D345399028B'
mode 0
as (
 query (
−− View
 subquery (
 JOB_HISTORY 0 access path sequential
 join by cross to
 EMPLOYEES 1 access path index EMPLOYEES_HASH
)
)
)
compliance optional ;

This alternate definition includes an index on JOB_HISTORY.

SQL> create outline CURRENT_JOB
cont> on view CURRENT_JOB
cont> mode 0
cont> as (
cont> query (

Oracle® Rdb for OpenVMS

10.1.6 CREATE OUTLINE Supports Trigger, Constraint, Column and View Outlines 354

cont> −− View
cont> subquery (
cont> JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
cont> join by cross to
cont> EMPLOYEES 1 access path index EMPLOYEES_HASH
cont>)
cont>)
cont>)
cont> compliance optional
cont> comment is 'qo for view CURRENT_JOB';

The following query shows the results when applying this query outline. The table RETIRED_EMPLOYEES,
as the name implies, contains all retired employees. Therefore, there should be no jobs assigned to these
employees and the query should return zero rows.

SQL> −− should return no rows, since the employee retired and
SQL> −− there is no current job
SQL> set flags 'strategy';
SQL> select EMPLOYEE_ID
cont> from CURRENT_JOB cj
cont> inner join RETIRED_EMPLOYEES re
cont> using (EMPLOYEE_ID)
cont> where EMPLOYEE_ID = '00164';
~S: Outline "CURRENT_JOB" used
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation RETIRED_EMPLOYEES
 Index name RE_EMPLOYEE_ID [1:1]
 Cross block entry 2
 Cross block of 2 entries
 Cross block entry 1
 Conjunct
 Leaf#01 FFirst JOB_HISTORY Card=274
 BgrNdx1 JH_EMPLOYEE_ID [1:1] Bool Fan=17
 Cross block entry 2
 Conjunct Index only retrieval of relation EMPLOYEES
 Index name EMPLOYEES_HASH [1:1] Direct lookup
0 rows selected
SQL>

Note that the query outline CURRENT_JOB is reported as being used.

10.1.7 New RMU/BACKUP Storage Area Assignment With
Thread Pools

This is to clarify how storage areas are assigned to disk and tape devices using the new RMU/BACKUP
THREAD POOL and BACKUP TO MULTIPLE DISK DEVICES features introduced in Oracle Rdb Release
7.1.

For the case of backup to multiple disk devices using thread pools, the algorithm used by RMU/BACKUP to
assign threads is to calculate the size of each area as the product of the page length in bytes times the highest
page number used (maximum page number) for that area. The area sizes are then sorted by descending size
and ascending device name. For internal processing reasons, the system area is placed as the first area in the
first thread. Each of the remaining areas is added to whichever thread has the lowest byte count. In this way,
the calculated area sizes are balanced between the threads.

Oracle® Rdb for OpenVMS

10.1.7 New RMU/BACKUP Storage Area Assignment With Thread Pools 355

For tape devices, the same algorithm is used but the areas are partitioned among writer threads, not disk
devices.

The partitioning for backup to multiple disk devices is done by disk device, not by output thread, because
there will typically be more disk devices than output threads, and an area can not span a device.

10.1.8 DROP INDEX Now an Online Table Operation

The example for the following note was in error in the original documentation.

DROP INDEX can now be used when other users are processing the table on which the index is defined. This
requires that the index has previously been disabled with the ALTER INDEX ... MAINTENANCE IS
DISABLED statement.

Once maintenance is disabled for an index, it is no longer used by queries on the table. For example, it is not
used for retrieval and it is not updated by INSERT, DELETE or UPDATE statements. Therefore, with this
release, Rdb has relaxed the requirement of EXCLUSIVE table access for DROP INDEX.

Oracle recommends that the DROP INDEX statement immediately be followed by a COMMIT statement so
that all locks on the system metadata be released. Otherwise, access to this and other tables may be stalled
waiting for rows locked in the tables RDB$INDICES, RDB$INDEX_SEGMENTS,
RDB$STORAGE_MAPS, and RDB$STORAGE_MAP_AREAS.

This change benefits very large databases (VLDB) which have the need to drop indices stored in MIXED
format storage areas on large cardinality tables. These indices may take several hours to erase, which in
previous versions required taking the table offline from normal processing until the DROP INDEX completed.

Note that indices stored in UNIFORM format storage areas do not take long to DROP due to optimizations
which can be made for UNIFORM areas.

−− Disable the index maintenance. This requires exclusive access to the
−− table, but takes a very short time. This should be done during normal
−− offline maintenance
−−
set transaction read write;
alter index TRANSACTION_POSTING_INDEX
 maintenance is disabled;
commit;

−− Once disabled the index can be dropped at any time
−−
set transaction read write;
drop index TRANSACTION_POSTING_INDEX;

commit;

Please note that DROP INDEX will write before image data to the snapshot files (.SNP) if the transaction is
started in a mode such as SHARED or PROTECTED. Snapshots can be disabled on the database to avoid the
excessive snapshot file I/O during concurrent DROP INDEX operations. Naturally, this may not be possible
under normal workloads.

Oracle® Rdb for OpenVMS

10.1.8 DROP INDEX Now an Online Table Operation 356

10.1.9 AUTOMATIC Clause Not Supported in ALTER TABLE ...
ALTER COLUMN

Bug 2170476

The ALTER TABLE description in the New and Changed Features Manual for Oracle Rdb 7.1 includes a
misleading syntax diagram. The alt−col−type diagram includes the AUTOMATIC clause as a possible
alternate when altering an existing column using the ALTER COLUMN clause. This functionality is currently
not supported by Oracle Rdb.

The revised syntax is:

10.1.10 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the
Database Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to determine the lock timeout
interval for that transaction. Those values are:

The value specified in the SET TRANSACTION statement1.
The value stored in the database as specified in CREATE or ALTER DATABASE2.
The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL3.

The timeout interval for a transaction is the smaller of the value specified in the SET TRANSACTION
statement and the value specified in CREATE DATABASE. However, if the logical name
RDM$BIND_LOCK_TIMEOUT_INTERVAL is defined, the value of this logical name overrides the value
specified in CREATE DATABASE.

The description of how these three values interact, found in several different parts of the Rdb documentation
set, is incorrect and will be replaced by the description above.

The lock timeout value in the database can be dynamically modified from the Locking Dashboard in
RMU/SHOW STATISTICS. The Per−Process Locking Dashboard can be used to dynamically override the
logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL for one or more processes.

10.1.11 New Request Options for RDO, RDBPRE and
RDB$INTERPRET

Oracle® Rdb for OpenVMS

10.1.9 AUTOMATIC Clause Not Supported in ALTER TABLE ... ALTER COLUMN 357

This release note was included in the V70A Release Notes but had gotten dropped somewhere along the line.

For this release of Rdb, two new keywords have been added to the handle−options for the
DECLARE_STREAM, the START_STREAM (undeclared format) and FOR loop statements. These changes
have been made to RDBPRE, RDO and RDB$INTERPRET at the request of several RDO customers.

In prior releases, the handle−options could not be specified in interactive RDO or RDB$INTERPRET. This
has changed in Rdb7 but these allowed options will be limited to MODIFY and PROTECTED keywords. For
RDBPRE, all options listed will be supported. These option names were chosen to be existing keywords to
avoid adding any new keywords to the RDO language.

The altered statements are shown in Example 5−1, Example 5−2 and Example 5−3.

Example 5−1 DECLARE_STREAM Format

Example 5−2 START_STREAM Format

Example 5−3 FOR Format

Each of these statements references the syntax for the HANDLE−OPTIONS which has been revised and is
shown below.

Oracle® Rdb for OpenVMS

10.1.9 AUTOMATIC Clause Not Supported in ALTER TABLE ... ALTER COLUMN 358

The following options are available for HANDLE−OPTIONS:

REQUEST_HANDLE specifies the request handle for this request. This option is only valid for
RDBPRE and RDML applications. It cannot be used with RDB$INTERPRET, nor interactive RDO.

•

TRANSACTION_HANDLE specifies the transaction handle under which this request executes. This
option is only valid for RDBPRE and RDML applications. It cannot be used with
RDB$INTERPRET, nor interactive RDO.

•

MODIFY specifies that the application will modify all (or most) records fetched from the stream or
for loop. This option can be used to improve application performance by avoiding lock promotion
from SHARED READ for the FETCH to PROTECTED WRITE access for the nested MODIFY or
ERASE statement. It can also reduce DEADLOCK occurrence because lock promotions are avoided.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This option is not
currently available for RDML.
For example:

 RDO> FOR (MODIFY) E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
 cont> MODIFY E USING E.MIDDLE_INITIAL = "M"
 cont> END_MODIFY
 cont> END_FOR

This FOR loop uses the MODIFY option to indicate that the nested MODIFY is an unconditional
statement and so aggressive locking can be undertaken during the fetch of the record in the FOR loop.

•

PROTECTED specifies that the application may modify records fetched by this stream by a separate
and independent MODIFY statement. Therefore, this stream should be protected from interference
(aka Halloween affect). The optimizer will select a snapshot of the rows and store them in a
temporary relation for processing, rather than traversing indexes at the time of the FETCH statement.
In some cases this may result in poorer performance when the temporary relation is large and
overflows from virtual memory to a temporary disk file, but the record stream will be protected from
interference. The programmer is directed to the documentation for the Oracle Rdb logical names
RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This option is not
currently available for RDML.
The following example creates a record stream in a BASIC program using Callable RDO:

 RDMS_STATUS = RDB$INTERPRET ('INVOKE DATABASE PATHNAME "PERSONNEL"')

 RDMS_STATUS = RDB$INTERPRET ('START_STREAM (PROTECTED) EMP USING ' + &
 'E IN EMPLOYEES')

 RDMS_STATUS = RDB$INTERPRET ('FETCH EMP')

 DML_STRING = 'GET ' + &

•

Oracle® Rdb for OpenVMS

10.1.9 AUTOMATIC Clause Not Supported in ALTER TABLE ... ALTER COLUMN 359

 '!VAL = E.EMPLOYEE_ID;' + &
 '!VAL = E.LAST_NAME;' + &
 '!VAL = E.FIRST_NAME' + &
 'END_GET'

 RDMS_STATUS = RDB$INTERPRET (DML_STRING, EMP_ID, LAST_NAME, FIRST_NAME)

In this case the FETCH needs to be protected against MODIFY statements which execute in other
parts of the application.

10.1.12 Missing Descriptions of RDB$FLAGS from HELP File

The HELP file for Oracle Rdb7 describes the system tables for Oracle Rdb and was missing these updated
descriptions of the RDB$FLAGS column for several tables.

Table 10−1 Changed Columns for RDB$INDICES Table

Column Name
Data
Type

Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS A bit mask where the bits have the following meaning when set:

Bit 0: This index is of type HASHED.

Bit 1: This index uses the MAPPING VALUES clause to compress
integer value ranges.

Bit 2: If this is a HASHED index then it is of type ORDERED. If
clear this indicates the index is of type SCATTERED.

Bit 3: Reserved for future use.

Bit 4: This index has run length compression enabled (ENABLE
COMPRESSION).

Bit 5: This index is no longer used (MAINTENANCE IS
DISABLED).

Bit 6 through 10: Reserved for future use.

Bit 11: This index has duplicates compressed (DUPLICATES
ARE COMPRESSED).

Bit 12: This index is of type SORTED RANKED.

Bits 13 through 31: Reserved for future use.

Table 10−2 Changed Columns for RDB$RELATIONS Table

Column Name
Data
Type

Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS A bit mask where the bits have the following meaning when set:

Bit 0: This relation is a view.

Bit 1: This relation is not compressed.

Oracle® Rdb for OpenVMS

10.1.12 Missing Descriptions of RDB$FLAGS from HELP File 360

Bit 2: The SQL clause, WITH CHECK OPTION, is used in this
view definition.

Bit 3: Indicates a special internal system relation.

Bit 4: This view is not an ANSI updatable view.

Bit 5: This is an imported table in the Distributed Option for Rdb
catalog.

Bit 6: This is a passthru table in the Distributed Option for Rdb
catalog.

Bit 7: This is a partitioned view in the Distributed Option for Rdb
catalog.

Bit 8: This table has compression defined by the storage map.
When set Bit 1 in this bit mask is ignored.

Bit 9: This is a temporary table.

Bit 10: When bit 9 is set this is a global temporary table, when
clear it indicates a local temporary table.

Bit 11: When bit 9 is set this indicates that the rows in the
temporary table should be deleted upon COMMIT.

Bit 12: Reserved for future use.

Bit 13: A table (via a computed by column) or view references a
local temporary table.

Bit 14: Reserved for future use.

Bit 15: This is a system table with a special storage map.

Bits 16 through 31: Reserved for future use.

Table 10−3 Changed Columns for RDB$STORAGE_MAPS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following meaning
when set:

Bit 0: This table or index is mapped to page format
MIXED areas.

Bit 1: This partition is not compressed.

Bit 2: This is a strictly partitioned storage map, the
partitioning columns become read only for UPDATE.

Bit 3 through 31: Reserved for future use.

Oracle® Rdb for OpenVMS

10.1.12 Missing Descriptions of RDB$FLAGS from HELP File 361

10.2 Address and Phone Number Correction for
Documentation
In release 7.0 or earlier documentation, the address and fax phone number listed on the Send Us Your
Comments page are incorrect. The correct information is:

FAX −− 603.897.3825
Oracle Corporation
One Oracle Drive
Nashua, NH 03062−2804
USA

10.2 Address and Phone Number Correction for Documentation 362

10.3 Online Document Format and Ordering
Information
You can view the documentation in Adobe Acrobat format using the Acrobat Reader, which allows anyone to
view, navigate, and print documents in the Adobe Portable Document Format (PDF). See
http://www.adobe.com for information about obtaining a free copy of Acrobat Reader and for information on
supported platforms.

The Oracle Rdb documentation in Adobe Acrobat format is available on MetaLink:

Top Tech Docs\Oracle Rdb\Documentation\<bookname>

In North America, printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase documentation from:

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed documentation.

10.3 Online Document Format and Ordering Information 363

10.4 New and Changed Features in Oracle Rdb
Release 7.1
This section provides information about late−breaking new features or information that is missing or changed
since the Oracle Rdb New and Changed Features for Oracle Rdb manual was published.

10.4.1 PERSONA is Supported in Oracle SQL/Services

In the "New and Changed Features for Oracle Rdb" Manual under the section "ALTER DATABASE
Statement" is a note stating that impersonation is not supported in Oracle SQL/Services. This is incorrect.
There was a problem in the first release of Oracle Rdb 7.1 (7.1.0) whereby impersonation through Oracle
SQL/Services failed. This problem is resolved in Oracle Rdb Release 7.1.0.1.

10.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be
Delimited Identifiers

The Oracle Rdb New and Changed Features for Oracle Rdb manual describes SEQUENCES but does not
mention that the special pseudocolumns NEXTVAL and CURRVAL can be delimited. All uppercase and
lowercase variations of these keywords are accepted and assumed to be equivalent to these uppercase
keywords.

The following example shows that any case is accepted:

SQL> set dialect 'sql92';
SQL> create sequence dept_id;
SQL> select dept_id.nextval from rdb$database;
 1
1 row selected
SQL> select "DEPT_ID".currval from rdb$database;
 1
1 row selected
SQL> select "DEPT_ID"."CURRVAL" from rdb$database;
 1
1 row selected
SQL> select "DEPT_ID"."nextval" from rdb$database;
 2
1 row selected
SQL> select "DEPT_ID"."CuRrVaL" from rdb$database;
 2
1 row selected

10.4.3 Only=select_list Qualifier for the RMU Dump
After_Journal Command

The Oracle Rdb New and Changed Features for Oracle Rdb manual documents the First=select_list and
Last=select_list qualifiers for the RMU Dump After_Journal command. Inadvertently missed was the
Only=select_list qualifier.

10.4 New and Changed Features in Oracle Rdb Release 7.1 364

The First, Last, and Only qualifiers have been added because the Start and End qualifiers are difficult to use
since users seldom know, nor can they determine, the AIJ record number in advance of using the RMU Dump
After_Journal command.

The select_list clause of these qualifiers consists of a list of one or more of the following keywords:

TSN=tsn
Specifies the first, last, or specific TSN in the AIJ journal using the standard [n:]m TSN format.

•

TID=tid
Specifies the first, last or specific TID in the AIJ journal.

•

RECORD=record
Specifies the first or last record in the AIJ journal. This is the same as the existing Start and End
qualifiers (which are still supported, but deprecated). This keyword cannot be used with the Only
qualifier.

•

BLOCK=block#
Specifies the first or last block in the AIJ journal. This keyword cannot be used with the Only
qualifier.

•

TIME=date_time
Specifies the first or last date/time in the AIJ journal using the standard date/time format. This
keyword cannot be used with the Only qualifier.

•

The First, Last, and Only qualifiers are optional. You may specify any or none of them.

The keywords specified for the First qualifier can differ from the keywords specified for the other qualifiers.

For example, to start the dump from the fifth block of the AIJ journal, you would use the following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=5) MF_PERSONNEL.AIJ

To start the dump from block 100 or TSN 52, whichever occurs first, you would use the following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=100,TSN=0:52) MF_PERSONNEL.AIJ

When multiple keywords are specified for a qualifier, the first condition being encountered activates the
qualifier. In the preceding example, the dump starts when either block 100 or TSN 52 is encountered.

Be careful when searching for TSNs or TIDs as they are not ordered in the AIJ journal. For example, if you
want to search for a specific TSN, use the Only qualifier and not the First and Last qualifiers. For example,
assume the AIJ journal contains records for TSN 150, 170, and 160 (in that order). If you specify the
First=TSN=160 and Last=TSN=160 qualifiers, nothing will be dumped because TSN 170 will match the
Last=TSN=160 criteria.

Oracle® Rdb for OpenVMS

10.4 New and Changed Features in Oracle Rdb Release 7.1 365

10.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide
to Hot Standby Databases
This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7 and Oracle
CODASYL DBMS Guide to Hot Standby Databases.

10.5.1 Restrictions Lifted on After−Image Journal Files

The Hot Standby software has been enhanced regarding how it handles after−image journal files. Section
4.2.4 in the Oracle Rdb and Oracle CODASYL DBMS Guide to Hot Standby Databases states the following
information:

 If an after−image journal switchover operation is suspended when
 replication operations are occurring, you must back up one or more of
 the modified after−image journals to add a new journal file.

This restriction has been removed. Now, you can add journal files or use the emergency AIJ feature of Oracle
Rdb release 7.0 to automatically add a new journal file. Note the following distinctions between adding an AIJ
file and adding an emergency AIJ file:

You can add an AIJ file to the master database and it will be replicated on the standby database. If
replication operations are active, the AIJ file is created on the standby database immediately. If
replication operations are not active, the AIJ file is created on the standby database when replication
operations are restarted.

•

You can add emergency AIJ files anytime. If replication operations are active, the emergency AIJ file
is created on the standby database immediately. However, because emergency AIJ files are not
journaled, starting replication after you create an emergency AIJ will fail. You cannot start replication
operations because the Hot Standby software detects a mismatch in the number of after−image journal
files on the master compared to the standby database.
If an emergency AIJ file is created on the master database when replication operations are not active,
you must perform a master database backup and then restore the backup on the standby database.
Otherwise, an AIJSIGNATURE error results.

•

10.5.2 Changes to RMU Replicate After_Journal ... Buffer
Command

The behavior of the RMU Replicate After_Journal ... Buffers command has been changed. The Buffers
qualifier may be used with either the Configure option or the Start option.

When using local buffers, the AIJ Log Roll−forward Server will use a minimum of 4096 buffers. The value
provided to the Buffers qualifier will be accepted but ignored if it is less than 4096. In addition, further
parameters will be checked and the number of buffers may be increased if the resulting calculations are
greater than the number of buffers specified by the Buffers qualifier. If the database is configured to use more
than 4096 AIJ Request Blocks (ARBs), then the number of buffers may be increased to the number of ARBs
configured for the database. The LRS ensures that there are at least 10 buffers for every possible storage area
in the database. Thus if the total number of storage areas (both used and reserved) multiplied by 10 results in a
greater number of buffers, then that number will be used.

10.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases 366

When global buffers are used, the number of buffers used by the AIJ Log Roll−forward Server is determined
as follows:

If the Buffers qualifier is omitted and the Online qualifier is specified, then the number of buffers will
default to the previously configured value, if any, or 256, whichever is larger.

•

If the Buffers qualifier is omitted and the Online qualifier is not specified or the Noonline qualifier is
specified, then the number of buffers will default to the maximum number of global buffers allowed
per user ("USER LIMIT"), or 256, whichever is larger.

•

If the Buffers qualifier is specified then that value must be at least 256, and it may not be greater than
the maximum number of global buffers allowed per user ("USER LIMIT").

•

The Buffer qualifier now enforces a minimum of 256 buffers for the AIJ Log Roll−forward Server. The
maximum number of buffers allowed is still 524288 buffers.

10.5.3 Unnecessary Command in the Hot Standby
Documentation

There is an unnecessary command documented in the Oracle Rdb and Oracle CODASYL DBMS Guide to
Hot Standby Databases manual. The documentation (in Section 2.12 "Step 10: Specify the Network Transport
Protocol") says that to use TCP/IP as the network protocol, you must issue the following commands:

$ CONFIG UCX AIJSERVER OBJECT
$ UCX SET SERVICE RDMAIJSRV
/PORT=n
/USER_NAME=RDMAIJSERVER
/PROCESS_NAME=RDMAIJSERVER
/FILE=SYS$SYSTEM:rdmaijserver_ucx.com
/LIMIT=nn

The first of these commands ($ CONFIG UCX AIJSERVER OBJECT) is unnecessary. You can safely
disregard the first line when setting up to use TCP/IP with Hot Standby.

The documentation will be corrected in a future release of Oracle Rdb.

10.5.4 Change in the Way RDMAIJ Server is Set Up in UCX

Starting with Oracle Rdb Release 7.0.2.1, the RDMAIJ image became a varianted image. Therefore, the
information in Section 2.12, "Step 10: Specify the Network Transport Protocol," of the Oracle Rdb7 and
Oracle CODASYL DBMS Guide to Hot Standby Databases has become outdated with regard to setting up the
RDMAIJSERVER object when using UCX as the network transport protocol. The UCX SET SERVICE
command is now similar to the following:

$ UCX SET SERVICE RDMAIJ −
 /PORT=port_number −
 /USER_NAME=RDMAIJ −
 /PROCESS_NAME=RDMAIJ −
 /FILE=SYS$SYSTEM:RDMAIJSERVER.com −
 /LIMIT=limit

For Oracle Rdb multiversion, the UCX SET SERVICE command is similar to the following:

$ UCX SET SERVICE RDMAIJ70 −

Oracle® Rdb for OpenVMS

10.5.3 Unnecessary Command in the Hot Standby Documentation 367

 /PORT=port_number −
 /USER_NAME=RDMAIJ70 −
 /PROCESS_NAME=RDMAIJ70 −
 /FILE=SYS$SYSTEM:RDMAIJSERVER70.com −
 /LIMIT=limit

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn) and places a file called
RDMAIJSERVER(nn).COM in SYS$SYSTEM. The RMONSTART(nn).COM command procedure will try
to enable a service called RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a varianted image does not impact installations using DECNet since the
correct DECNet object is created during the Oracle Rdb installation.

10.5.5 CREATE INDEX Operation Supported for Hot Standby

On Page 1−13 of the Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases, the add
new index operation is incorrectly listed as an offline operation not supported by Hot Standby. The CREATE
INDEX operation is now fully supported by Hot Standby, as long as the transaction does not span all available
AIJ journals, including emergency AIJ journals.

Oracle® Rdb for OpenVMS

10.5.5 CREATE INDEX Operation Supported for Hot Standby 368

10.6 Oracle Rdb7 for OpenVMS Installation and
Configuration Guide
This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7 for OpenVMS
Installation and Configuration Guide.

10.6.1 Suggestion to Increase GH_RSRVPGCNT Removed

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains a section titled "Installing
Oracle Rdb Images as Resident on OpenVMS Alpha". This section includes information about increasing the
value of the OpenVMS system parameter GH_RSRVPGCNT when you modify the RMONSTART.COM or
SQL$STARTUP.COM procedures to install Oracle Rdb images with the Resident qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only required if the RMONSTART.COM or
SQL$STARTUP.COM procedures have been manually modified to install Oracle Rdb images with the
Resident qualifier. Furthermore, if the RMONSTART.COM and SQL$STARTUP.COM procedures are
executed during the system startup procedure (directly from SYSTARTUP_VMS.COM, for example), there is
no need to modify the GH_RSRVPGCNT parameter.

Oracle Corporation recommends that you do not modify the value of the GH_RSRVPGCNT system
parameter unless it is absolutely required. Some versions of OpenVMS on some hardware platforms require
GH_RSRVPGCNT to be a value of zero in order to ensure the highest level of system performance.

10.6.2 Prerequisite Software

In addition to the software listed in the Oracle Rdb Installation and Configuration Guide and at the url
http://www.oracle.com/rdb/product_info/index.html, note that the MACRO compiler and linker from HP
Computer Corporation are required software in order to install Oracle Rdb on your OpenVMS Alpha system.

10.6.3 Defining the RDBSERVER Logical Name

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and Configuration Guide provide
the following examples for defining the RDBSERVER logical name: $ DEFINE RDBSERVER
SYS$SYSTEM:RDBSERVER70.EXE

and $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt to reference the
RDBSERVERxx.EXE image. Below is one example where the RDBSERVER.COM procedure references
SYS$COMMON:<SYSEXE> and SYS$COMMON:[SYSEXE] rather than SYS$SYSTEM.

$ if .not. −
 ((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. −
 (f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))
$ then
$ say "''rdbserver_image' is not found in SYS$COMMON:<SYSEXE>"
$ say "RDBSERVER logical is ''rdbserver_image'"
$ exit
$ endif

10.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide 369

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide, the image would not be found.

The correct definition of the logical name is as follows: DEFINE RDBSERVER
SYS$COMMON:<SYSEXE>RDBSERVER70.EXE

and DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

Oracle® Rdb for OpenVMS

10.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide 370

10.7 Guide to Database Design and Definition
This section provides information that is missing from or changed in release 7.0 of the Oracle Rdb7 Guide to
Database Design and Definition.

10.7.1 Lock Timeout Interval Logical Incorrect

On Page 7−31 of Section 7.4.8 in the Oracle Rdb7 Guide to Database Design and Definition, the
RDM$BIND_LOCK_TIMEOUT logical name is referenced incorrectly. The correct logical name is
RDM$BIND_LOCK_TIMEOUT_INTERVAL.

The Oracle Rdb7 Guide to Database Design and Definition will be corrected in a future release.

10.7.2 Example 4−13 and Example 4−14 Are Incorrect

Example 4−13 showing vertical partitioning, and Example 4−14, showing vertical and horizontal partitioning,
are incorrect. They should appear as follows:

Example 4−13:

SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP
cont> FOR EMPLOYEES
cont> ENABLE COMPRESSION
cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
cont> MIDDLE_INITIAL, STATUS_CODE)
cont> DISABLE COMPRESSION
cont> IN ACTIVE_AREA
cont> STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
cont> STATE, POSTAL_CODE)
cont> IN INACTIVE_AREA
cont> STORE IN OTHER_AREA;

Example 4−14:

SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP2
cont> FOR EMP2
cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
cont> MIDDLE_INITIAL, STATUS_CODE)
cont> USING (EMPLOYEE_ID)
cont> IN ACTIVE_AREA_A WITH LIMIT OF ('00399')
cont> IN ACTIVE_AREA_B WITH LIMIT OF ('00699')
cont> OTHERWISE IN ACTIVE_AREA_C
cont> STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
cont> STATE, POSTAL_CODE)
cont> USING (EMPLOYEE_ID)
cont> IN INACTIVE_AREA_A WITH LIMIT OF ('00399')
cont> IN INACTIVE_AREA_B WITH LIMIT OF ('00699')
cont> OTHERWISE IN INACTIVE_AREA_C
cont> STORE IN OTHER_AREA;

10.7 Guide to Database Design and Definition 371

10.8 Oracle Rdb7 SQL Reference Manual
This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7 SQL Reference
Manual.

10.8.1 Clarification of the DDLDONOTMIX Error Message

The ALTER DATABASE statement performs two classes of functions:

Changing the database root structures in the .RDB file1.
Modifying the system metadata in the RDB$SYSTEM storage area.2.

The first class of changes do not require a transaction to be active. However, the second class requires that a
transaction be active. Oracle Rdb does not currently support the mixing of these two classes of ALTER
DATABASE clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the {SQL−syntax}
clause can not be used with some ALTER DATABASE clauses" is displayed, and the ALTER DATABASE
statement fails. For example:

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA;
%RDB−F−BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
−RDMS−E−DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

The following clauses may be mixed with each other, but may not appear with other clauses such as ADD
STORAGE AREA or ADD CACHE:

DICTIONARY IS [NOT] REQUIRED•
DICTIONARY IS NOT USED•
MULTISCHEMA IS { ON | OFF }•
CARDINALITY COLLECTION IS { ENABLED | DISABLED }•
METADATA CHANGES ARE { ENABLED | DISABLED }•
WORKLOAD COLLECTION IS { ENABLED | DISABLED }•
SYNONYMS ARE ENABLED•
SECURITY CHECKING IS { INTERNAL | EXTERNAL }•

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into two statements,
one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

10.8 Oracle Rdb7 SQL Reference Manual 372

10.8.2 Node Specification Allowed on Root FILENAME Clauses

In previous releases of the Oracle Rdb SQL Reference Manual, it was not made clear that a node specification
may only be specified for the root FILENAME clause of the ALTER DATABASE, CREATE DATABASE,
EXPORT DATABASE, and IMPORT DATABASE statements.

This means that the directory or file specification specified with the following clauses can only be a device,
directory, file name, and file type:

LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY JOURNAL, ADD CACHE,
and CREATE CACHE clauses

•

SNAPSHOT FILENAME clause•
FILENAME and SNAPSHOT FILENAME clauses of the ADD STORAGE AREA and CREATE
STORAGE AREA clauses

•

BACKUP FILENAME clause of the JOURNAL IS ENABLED, ADD JOURNAL, and ALTER
JOURNAL clauses

•

BACKUP SERVER and CACHE FILENAME clauses of the JOURNAL IS ENABLED clause•
FILENAME clause of the ADD JOURNAL clause•

Usage notes reflecting this restriction for these clauses will appear in a future release of the Oracle Rdb SQL
Reference Manual.

10.8.3 Incorrect Syntax Shown for Routine−Clause of the
CREATE MODULE Statement

The Oracle Rdb7 SQL Reference Manual incorrectly showed that a simple−statement could be specified for
the routine−clause of the CREATE MODULE statement. You can specify a compound−statement and
compound−use−statement for the routine−clause only of the CREATE MODULE statement.

This correction appears in the Oracle Rdb New and Changed Features for Oracle Rdb manual and will appear
in a future release of the Oracle Rdb7 SQL Reference Manual.

10.8.4 Omitted SET Statements

The following SET statements and language options were omitted from the Oracle Rdb7 SQL Reference
Manual.

10.8.4.1 QUIET COMMIT

The following QUIET COMMIT options were omitted from the documentation:

 Interactive and dynamic SET QUIET COMMIT statement
 SQL
 Module Header QUIET COMMIT option
 SQL Module Language /QUIET_COMMIT and /NOQUIET_COMMIT qualifiers
 SQL Precompiler /SQLOPTIONS=QUIET_COMMIT and
 /SQLOPTIONS=NOQUIET_COMMIT options

These options control the behavior of the COMMIT and ROLLBACK statements in cases where there is no
active transaction.

Oracle® Rdb for OpenVMS

10.8.2 Node Specification Allowed on Root FILENAME Clauses 373

By default, if there is no active transaction, SQL will raise an error when COMMIT or ROLLBACK is
executed. This default is retained for backward compatibility for applications that wish to detect the situation.
If QUIET COMMIT is set to ON, a COMMIT or ROLLBACK executes successfully when there is no active
transaction.

Within a compound statement, the COMMIT and ROLLBACK statements are ignored.

In interactive or dynamic SQL, the SET statement can be used to disable or enable error reporting for
COMMIT and ROLLBACK when no transaction is active. The parameter to the SET command is a string
literal or host variable containing the keyword ON or OFF. For example:

SQL> COMMIT;
%SQL−F−NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;
%SQL−F−NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT 'on';
SQL> ROLLBACK;
SQL> COMMIT;
SQL> SET QUIET COMMIT 'off';
SQL> COMMIT;
%SQL−F−NO_TXNOUT, No transaction outstanding

In the SQL module language or precompiler header, the QUIET COMMIT option can be used to disable or
enable error reporting for COMMIT and ROLLBACK when no transaction is active. The keyword ON or
OFF must be used to enable or disable this feature. The following example enables QUIET COMMIT so that
no error is reported if a COMMIT is executed when no transaction is active:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

10.8.4.2 COMPOUND TRANSACTIONS

The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic SQL) and the module
header option, COMPOUND TRANSACTIONS, controls the SQL behavior for starting default transactions
for compound statements.

By default, if there is no current transaction, SQL will start a transaction before executing a compound
statement or stored procedure. However, this may conflict with the actions within the procedure or may start a
transaction for no reason if the procedure body does not perform database access. This default is retained for
backward compatibility for applications which may expect a transaction to be started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, SQL starts a transaction before executing the
procedure. Otherwise, if it is set to INTERNAL, it allows the procedure to start a transaction as required by
the procedure execution.

Oracle® Rdb for OpenVMS

10.8.4.2 COMPOUND TRANSACTIONS 374

In interactive or dynamic SQL, the following SET command can be used to disable or enable transactions
starting by the SQL interface. The parameter to the SET command is a string literal or host variable
containing the keyword 'INTERNAL' or 'EXTERNAL'.

SQL> SET COMPOUND TRANSACTIONS 'internal';
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS 'external';
SQL> CALL UPDATE_EMPLOYEES (...);

In the SQL module language or precompiler header, the COMPOUND TRANSACTIONS option can be used
to disable or enable starting a transaction for procedures. The keyword INTERNAL or EXTERNAL must be
used to enable or disable this feature.

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

10.8.5 Size Limit for Indexes with Keys Using Collating
Sequences

When a column is defined with a collating sequence, the index key is specially encoded to incorporate the
correct collating information. This special encoding takes more space than keys encoded for ASCII (which is
the default when no collating sequence is used). Therefore, the encoded string uses more than the customary
one byte per character of space within the index. This is true for all versions of Oracle Rdb which support
collating sequences.

For all collating sequences, except Norwegian, the space required is approximately 9 bytes for every 8
characters. Therefore, a CHAR (24) column will require approximately 27 bytes to store. For Norwegian
collating sequences, the space required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when calculating the size of an index
key against the limit of 255 bytes. Suppose a column defined with a collating sequence of GERMAN was
used in an index. The length of that column is limited to a maximum of 225 characters because the key will be
encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a German collating sequence
and included in an index, exceeds the index size limit of 255 bytes, even though the column is defined as less
than 255 characters in length.

SQL> CREATE DATABASE
cont> FILENAME 'testdb.rdb'

Oracle® Rdb for OpenVMS

10.8.5 Size Limit for Indexes with Keys Using Collating Sequences 375

cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> CREATE TABLE employee_info
cont> (emp_name CHAR (233));
SQL> CREATE INDEX emp_name_idx
cont> ON employee_info (
cont> emp_name ASC)
cont> TYPE IS SORTED;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−INDTOOBIG, requested index is too big

10.8.6 Clarification of SET FLAGS Option
DATABASE_PARAMETERS

The Oracle Rdb7 SQL Reference Manual described the option DATABASE_PARAMETERS in table 7−6 in
the SET FLAGS section. However, this keyword generates output only during ATTACH to the database
which happens prior to the SET FLAGS statement executing.

This option is therefore only useful when used with the RDMS$SET_FLAGS logical name which provides
similar functionality.

$ define RDMS$SET_FLAGS "database_parameters"
$ sql$
SQL> Attach 'File db$:scratch';
 ATTACH #1, Database BLUGUM$DKA300:[SMITHI.DATABASES.V70]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"
0040 (00064) RDB$K_FACILITY_ALL
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0045 (00069) RDB$K_FACILITY_ALL
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)
004A (00074) RDB$K_FACILITY_RDB_VMS
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)
 RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0)
SQL> Exit
 DETACH #1

10.8.7 Incorrect Syntax for CREATE STORAGE MAP Statement

The main diagram of the CREATE STORAGE MAP statement incorrectly shows the partition−clause as
required syntax. The partition−clause is not a required clause.

The partition−clause diagram of the CREATE STORAGE MAP statement incorrectly indicated that the
STORE keyword was not repeated. When creating a vertically partitioned table you must repeat the STORE
keyword for each partition.

FORMAT

Oracle® Rdb for OpenVMS

10.8.6 Clarification of SET FLAGS Option DATABASE_PARAMETERS 376

When creating a vertical record partition, the last STORE clause cannot contain the COLUMNS clause. If you
attempt to include the COLUMNS clause on the last STORE clause, you will an error similar to the following:

%SQL−F−VRP_ILLEGAL_STO, Storage Map "EMPLOYEES_MAP2" specified STORE COLUMNS
after a STORE

The following example shows the correct syntax for creating a storage map with horizontal and vertical
partitions:

SQL> CREATE STORAGE MAP employees_map2
cont> FOR employees2
cont> −−
cont> −− Store the primary information horizontally partitioned
cont> −− across the areas EMPIDS_LOW, EMPIDS_MID and EMPIDS_OVER.
cont> −− Disable compression because these columns are accessed often.
cont> −−
cont> STORE
cont> COLUMNS (employee_id, last_name,
cont> first_name, middle_initial)
cont> VERTICAL PARTITION volatile_columns
cont> DISABLE COMPRESSION
cont> USING (employee_id)
cont> IN empids_low
cont> (PARTITION id_low)
cont> WITH LIMIT OF (`00200')
cont> IN empids_mid
cont> (PARTITION id_mid)
cont> WITH LIMIT OF (`00400')
cont> OTHERWISE IN empids_over
cont> (partition id_ovr)
cont> −−
cont> −− Place all the address information in EMP_INFO.
cont> −− Make sure these character columns are compressed.
cont> −−
cont> STORE
cont> COLUMNS (address_data_1, address_data_2, city, state,
cont> postal_code)
cont> ENABLE COMPRESSION
cont> IN emp_info
cont> −−
cont> −− The remaining columns get written randomly over these area.
cont> −−
cont> STORE
cont> ENABLE COMPRESSION
cont> RANDOMLY ACROSS (salary_history, jobs);

Refer to Oracle Rdb New and Changed Features for Oracle Rdb for the full syntax of the CREATE
STORAGE MAP statement. The Oracle Rdb7 SQL Reference Manual will be corrected in a future release.

Oracle® Rdb for OpenVMS

10.8.6 Clarification of SET FLAGS Option DATABASE_PARAMETERS 377

10.8.8 Use of SQL_SQLCA Include File Intended for Host
Language File

Use of the SQLCA include files such as the SQL_SQLCA.H file for C, are intended for use with the host
language files only. That is, only *.C should be including that file. Precompiled files (*.SC files) should use
the EXEC SQL INCLUDE SQLCA embedded SQL command in the declaration section of the module. In this
way the precompiler can properly define the structure to be used by the related SQL generated code.

Remember that the SQLCA is always scoped at the module level, unlike the SQLCODE or SQLSTATE
variables which may be routine specific.

The following example shows this error:

#include <stdio.h>
#include <sql_sqlca.h>
struct SQLCA SQLCA;

int main (void)
{
EXEC SQL EXECUTE IMMEDIATE `show version';
printf ("SQLCODE=%d\n", SQLCA.SQLCODE);
}
$ SQLPRE/CC issues the following error against this program:
%SQL−F−NOSQLCODE, Neither SQLCA, SQLCODE nor SQLSTATE were declared

The following example shows correct usage:

#include <stdio.h>
#include <sql_sqlca.h>
EXEC SQL INCLUDE SQLCA;

int main (void)
{
EXEC SQL EXECUTE IMMEDIATE `show version';
printf ("SQLCODE=%d\n", SQLCA.SQLCODE);
}

10.8.9 Missing Information on Temporary Tables

The following information was inadvertently omitted from the Oracle Rdb7 SQL Reference Manual. (Should
be in the Usage Notes for CREATE TEMPORARY TABLE.)

Data for a temporary table is stored in virtual memory, not in a storage area. For journaling purposes, when
changes are made to the data in a temporary table such as updates or deletes, recovery space is required to
hold before images of deleted and updated rows. This recovery space also requires virtual memory and may
result in having to increase Page File Quota and Virtual Page Count on OpenVMS.

A recommended way to reduce memory usage when using temporary tables is to commit transactions which
modify temporary table data as soon as possible. Upon commit the additional copies of data are released and
available for reuse by Oracle Rdb. This eliminates extra copies of data and therefore reduces virtual memory
usage.

Oracle® Rdb for OpenVMS

10.8.8 Use of SQL_SQLCA Include File Intended for Host Language File 378

See the Oracle Rdb7 Guide to Database Design and Definition for calculating memory usage for temporary
tables.

Oracle® Rdb for OpenVMS

10.8.8 Use of SQL_SQLCA Include File Intended for Host Language File 379

10.9 Oracle RMU Reference Manual, Release 7.0
This section provides information that is missing from or changed in V7.0 of the Oracle RMU Reference
Manual.

10.9.1 RMU Unload After_Journal Null Bit Vector Clarification

Each output record from the RMU /UNLOAD /AFTER_JOURNAL command includes a vector (array) of
bits. There is one bit for each field in the data record. If a null bit value is 1, the corresponding field is NULL;
if a null bit value is 0, the corresponding field is not NULL and contains an actual data value. The contents of
a data field that is NULL are not initialized and are not predictable.

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN indicates the number of valid
bits (and thus, the number of columns in the table). Any extra bits in the final byte of the vector after the final
null bit are unused and the contents are unpredictable.

The following example C program demonstrates one possible way of reading and parsing a binary output file
(including the null bit vector) from the RMU /UNLOAD /AFTER_JOURNAL command. This sample
program has been tested using Oracle Rdb V7.0.5 and higher and HP C V6.2−009 on OpenVMS Alpha
V7.2−1. It is meant to be used as a template for writing your own program.

/* DATATYPES.C */

#include <stdio.h>
#include <descrip.h>
#include <starlet.h>
#include <string.h>

#pragma member_alignment __save
#pragma nomember_alignment

struct { /* Database key structure */
 unsigned short lno; /* line number */
 unsigned int pno; /* page number */
 unsigned short dbid; /* area number */
 } dbkey;

typedef struct { /* Null bit vector with one bit for each column */
 unsigned n_tinyint :1;
 unsigned n_smallint :1;
 unsigned n_integer :1;
 unsigned n_bigint :1;
 unsigned n_double :1;
 unsigned n_real :1;
 unsigned n_fixstr :1;
 unsigned n_varstr :1;
 } nbv_t;

struct { /* LogMiner output record structure for table DATATYPES */
 char rdb$lm_action;
 char rdb$lm_relation_name [31];
 int rdb$lm_record_type;
 short rdb$lm_data_len;
 short rdb$lm_nbv_len;
 __int64 rdb$lm_dbk;
 __int64 rdb$lm_start_tad;

10.9 Oracle RMU Reference Manual, Release 7.0 380

 __int64 rdb$lm_commit_tad;
 __int64 rdb$lm_tsn;
 short rdb$lm_record_version;
 char f_tinyint;
 short f_smallint;
 int f_integer;
 __int64 f_bigint;
 double f_double;
 float f_real;
 char f_fixstr[10];
 short f_varstr_len; /* length of varchar */
 char f_varstr[10]; /* data of varchar */
 nbv_t nbv;
 } lm;

#pragma member_alignment __restore

main ()
{ char timbuf [24];
 struct dsc$descriptor_s dsc = {
 23, DSCK_DTYPE_T, DSCK_CLASS_S, timbuf};
 FILE *fp = fopen ("datatypes.dat", "r", "ctx=bin");

 memset (&timbuf, 0, sizeof(timbuf));

 while (fread (&lm, sizeof(lm), 1, fp) != 0)
 {
 printf ("Action = %c\n", lm.rdb$lm_action);
 printf ("Table = %.*s\n", sizeof(lm.rdb$lm_relation_name),
 lm.rdb$lm_relation_name);
 printf ("Type = %d\n", lm.rdb$lm_record_type);
 printf ("Data Len = %d\n", lm.rdb$lm_data_len);
 printf ("Null Bits = %d\n", lm.rdb$lm_nbv_len);

 memcpy (&dbkey, &lm.rdb$lm_dbk, sizeof(lm.rdb$lm_dbk));
 printf ("DBKEY = %d:%d:%d\n", dbkey.dbid,
 dbkey.pno,
 dbkey.lno);

 sys$asctim (0, &dsc, &lm.rdb$lm_start_tad, 0);
 printf ("Start TAD = %s\n", timbuf);

 sys$asctim (0, &dsc, &lm.rdb$lm_commit_tad, 0);
 printf ("Commit TAD = %s\n", timbuf);

 printf ("TSN = %Ld\n", lm.rdb$lm_tsn);
 printf ("Version = %d\n", lm.rdb$lm_record_version);

 if (lm.nbv.n_tinyint == 0)
 printf ("f_tinyint = %d\n", lm.f_tinyint);
 else printf ("f_tinyint = NULL\n");

 if (lm.nbv.n_smallint == 0)
 printf ("f_smallint = %d\n", lm.f_smallint);
 else printf ("f_smallint = NULL\n");

 if (lm.nbv.n_integer == 0)
 printf ("f_integer = %d\n", lm.f_integer);
 else printf ("f_integer = NULL\n");

 if (lm.nbv.n_bigint == 0)

Oracle® Rdb for OpenVMS

10.9 Oracle RMU Reference Manual, Release 7.0 381

 printf ("f_bigint = %Ld\n", lm.f_bigint);
 else printf ("f_bigint = NULL\n");

 if (lm.nbv.n_double == 0)
 printf ("f_double = %f\n", lm.f_double);
 else printf ("f_double = NULL\n");

 if (lm.nbv.n_real == 0)
 printf ("f_real = %f\n", lm.f_real);
 else printf ("f_real = NULL\n");

 if (lm.nbv.n_fixstr == 0)
 printf ("f_fixstr = %.*s\n", sizeof (lm.f_fixstr),
 lm.f_fixstr);
 else printf ("f_fixstr = NULL\n");

 if (lm.nbv.n_varstr == 0)
 printf ("f_varstr = %.*s\n", lm.f_varstr_len, lm.f_varstr);
 else printf ("f_varstr = NULL\n");

 printf ("\n");
 }
}

Example sequence of commands to create a table, unload the data and display the contents with this program:

SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> CREATE TABLE DATATYPES (
 F_TINYINT TINYINT
 ,F_SMALLINT SMALLINT
 ,F_INTEGER INTEGER
 ,F_BIGINT BIGINT
 ,F_DOUBLE DOUBLE PRECISION
 ,F_REAL REAL
 ,F_FIXSTR CHAR (10)
 ,F_VARSTR VARCHAR (10));
SQL> COMMIT;
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, 'THIS', NULL);
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, 'THAT');
SQL> COMMIT;
SQL> EXIT;
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ −
 /TABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT)
$ CC DATATYPES.C
$ LINK DATATYPES.OBJ
$ RUN DATATYPES.EXE

10.9.2 New Transaction_Mode Qualifier for Oracle RMU
Commands

A new qualifier, Transaction_Mode, has been added to the RMU Copy, Move_Area, Restore, and Restore
Only_Root commands. You can use this qualifier to set the allowable transaction modes for the database root
file created by these commands. If you are not creating a root file as part of one of these commands, for
example, you are restoring an area, attempting to use this qualifier returns a CONFLSWIT error. This
qualifier is similar to the SET TRANSACTION MODE clause of the CREATE DATABASE command in

Oracle® Rdb for OpenVMS

10.9.2 New Transaction_Mode Qualifier for Oracle RMU Commands 382

interactive SQL.

The primary use of this qualifier is when you restore a backup file (of the master database) to create a Hot
Standby database. Include the Transaction_Mode qualifier on the RMU Restore command when you create
the standby database (prior to starting replication operations). Because only read−only transactions are
allowed on the standby database, you should use the Transaction_Mode=Read_Only qualifier setting. This
setting prevents modifications to the standby database at all times, even when replication operations are not
active.

You can specify the following transaction modes for the Transaction_Mode qualifier:

All
Current
None
[No]Batch_Update
[No]Read_Only
[No]Exclusive
[No]Exclusive_Read
[No]Exclusive_Write
[No]Protected
[No]Protected_Read
[No]Protected_Write
[No]Shared
[No]Shared_Read
[No]Shared_Write

Note that [No] indicates that the value can be negated. For example, the NoExclusive_Write option indicates
that exclusive write is not an allowable access mode for this database. If you specify the Shared, Exclusive, or
Protected option, Oracle RMU assumes you are referring to both reading and writing in these modes. For
example, the Transaction_Mode=Shared option indicates that you want both Shared_Read and Shared_Write
as transaction modes. No mode is enabled unless you add that mode to the list or you use the ALL option to
enable all modes.

You cannot negate the following three options: All, which enables all transaction modes; None, which
disables all transaction modes; and Current, which enables all transaction modes that are set for the source
database. If you do not specify the Transaction_Mode qualifier, Oracle RMU uses the transaction modes
enabled for the source database.

You can list one qualifier that enables or disables a particular mode followed by another that does the
opposite. For example, Transaction_Mode=(NoShared_Write, Shared) is ambiguous because the first value
disables Shared_Write access while the second value enables Shared_Write access. Oracle RMU resolves the
ambiguities by first enabling all modes that are enabled by the items in the Transaction_Mode list and then
disabling those modes that are disabled by items in the Transaction_Mode list. The order of items in the list is
irrelevant. In the example discussed, Shared_Read is enabled and Shared_Write is disabled.

The following example shows how to set a newly restored database to allow read−only transactions only.
After Oracle RMU executes the command, the database is ready for you to start Hot Standby replication
operations.

$ RMU/RESTORE/TRANSACTION_MODE=READ_ONLY MF_PERSONNEL.RBF

Oracle® Rdb for OpenVMS

10.9.2 New Transaction_Mode Qualifier for Oracle RMU Commands 383

10.9.3 RMU Server After_Journal Stop Command

If database replication is active and you attempt to stop the database AIJ Log Server, Oracle Rdb returns an
error. You must stop database replication before attempting to stop the server.

In addition, a new qualifier, Output=filename, has been added to the RMU Server After_Journal Stop
command. This optional qualifier allows you to specify the file where the operational log is to be created. The
operational log records the transmission and receipt of network messages.

If you do not include a directory specification with the file name, the log file is created in the database root
file directory. It is invalid to include a node name as part of the file name specification.

Note that all Hot Standby bugcheck dumps are written to the corresponding bugcheck dump file; bugcheck
dumps are not written to the file you specify with the Output qualifier.

10.9.4 Incomplete Description of Protection Qualifier for RMU
Backup After_Journal Command

The description of the Protection Qualifier for the RMU Backup After_Journal command is incomplete in the
Oracle RMU Reference Manual for Digital UNIX. The complete description is as follows:

The Protection qualifier specifies the system file protection for the backup file produced by the RMU Backup
After_Journal command. If you do not specify the Protection qualifier, the default access permissions are
−rw−r−−−−− for backups to disk or tape.

Tapes do not allow delete or execute access and the superuser account always has both read and write access
to tapes. In addition, a more restrictive class accumulates the access rights of the less restrictive classes.

If you specify the Protection qualifier explicitly, the differences in access permissions applied for backups to
tape or disk as noted in the preceding paragraph are applied. Thus, if you specify Protection=(S,O,G:W,W:R),
the access permissions on tape becomes rw−rw−r−.

10.9.5 RMU Extract Command Options Qualifier

A documentation error exists in the description of the Options=options−list qualifier of the RMU Extract
command. Currently, the documentation states that this qualifier is not applied to output created by the
Items=Volume qualifier. This is incorrect. Beginning with 6.1 of Oracle Rdb, the behavior of the
Options=options−list qualifier is applied to output created by the Items=Volume qualifier.

10.9.6 RDM$SNAP_QUIET_POINT Logical is Incorrect

On page 2−72 of the Oracle RMU Reference Manual, the reference to the RDM$SNAP_QUIET_POINT
logical is incorrect. The correct logical name is RDM$BIND_SNAP_QUIET_POINT.

10.9.7 Using Delta Time with RMU Show Statistics Command

Oracle RMU does not support the use of delta time. However, because the OpenVMS platform does, there is a
workaround. You can specify delta time using the following syntax with the RMU Show Statistics command:

Oracle® Rdb for OpenVMS

10.9.3 RMU Server After_Journal Stop Command 384

$ RMU/SHOW STATISTICS/OUTPUT=file−spec/UNTIL=" ' ' f$cvtime ("+7:00") ' "

The +7:00 adds 7 hours to the current time.

You can also use "TOMORROW" and "TODAY+n".

This information will be added to the description of the Until qualifier of the RMU Show Statistics command
in a future release of the Oracle RMU Reference Manual.

Oracle® Rdb for OpenVMS

10.9.3 RMU Server After_Journal Stop Command 385

10.10 Oracle Rdb7 Guide to Database Performance
and Tuning
The following section provides corrected, clarified, or omitted information for the Oracle Rdb7 Guide to
Database Performance and Tuning manual.

10.10.1 Dynamic OR Optimization Formats

In Table C−2 on Page C−7 of the Oracle Rdb7 Guide to Database Performance and Tuning, the dynamic OR
optimization format is incorrectly documented as [l:h...]n. The correct formats for Oracle Rdb Release 7.0 and
later are [(l:h)n] and [l:h,l2:h2].

10.10.2 Oracle Rdb Logical Names

The Oracle Rdb7 Guide to Database Performance and Tuning contains a table in Chapter 2 summarizing the
Oracle Rdb logical names. The information in the following table supersedes the entries for the
RDM$BIND_RUJ_ALLOC_BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT logical names.

RDM$BIND_RUJ_ALLOC_BLKCNT Allows you to override the default value of the .ruj file. The block
count value can be defined between 0 and 2 billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre−extend the .ruj files for each process using a
database. The block count value can be defined between 0 and 65535 with a default of 127.

10.10.3 Waiting for Client Lock Message

The Oracle Rdb7 Guide to Database Performance and Tuning contains a section in Chapter 3 that describes
the Performance Monitor Stall Messages screen. The section contains a list describing the "Waiting for"
messages. The description of the "waiting for client lock" message was missing from the list.

A client lock indicates that an Rdb metadata lock is in use. The term client indicates that Rdb is a client of the
Rdb locking services. The metadata locks are used to guarantee memory copies of the metadata (table, index
and column definitions) are consistent with the on−disk versions.

The "waiting for client lock" message means the database user is requesting an incompatible locking mode.
For example, when trying to drop a table which is in use, the drop operation requests a PROTECTED WRITE
lock on the metadata object (such as a table) which is incompatible with the existing PROTECTED READ
lock currently used by other users of the table.

The lock name for these special locks consist of an encoded 16 byte name. The first 4 bytes contains the
leading four bytes of the user name (for system objects the RDB$ prefix is skipped) followed by three
longwords. The lock is displayed in text format first − here will be seen the prefix for the table, routine, or
module name; followed by its hexadecimal representation. The text version masks out non−printable
characters with a dot (.).

waiting for client '...."...EMPL' 4C504D45000000220000000400000055

10.10 Oracle Rdb7 Guide to Database Performance and Tuning 386

The leftmost value seen in the hexadecimal output contains the name prefix which is easier read in the text
field. Then comes a hex number (00000022) which is the id of the object. The id is described below for tables,
views, functions, procedures, modules, and sequences.

For tables and views, the id represents the unique value found in the RDB$RELATION_ID column of
the RDB$RELATIONS system relation for the given table.

•

For routines (that is functions and procedures), the id represents the unique value found in the
RDB$ROUTINE_ID column of the RDB$ROUTINES system relation for the given routine.

•

For modules, the id represents the unique value found in the RDB$MODULE_ID column of the
RDB$MODULES system relation for the given module.

•

For sequences, the id represents the unique value found in the RDB$SEQUENCE_ID column of the
RDB$SEQUENCES system relation for the given sequence.

•

The next value displayed signifies the object type. The following table describes objects and their
hexadecimal type values.

Table 10−4 Objects and Their Hexadecimal Type Value

Object Hexadecimal Value

Tables or views 00000004

Modules 00000015

Routines 00000016

Sequences 00000019

The last value in the hexadecimal output represents the lock type. The hexadecimal value 55 indicates this is a
client lock and distinct from page and other data structure locks.

The following example shows a "waiting for client lock" message from a Stall Messages screen while the
application was processing the EMPLOYEES table from MF_PERSONNEL. The terminal should be set to
132 characters wide to view the full client lock string.

Process.ID Since.................. T Stall.reason.............................Lock.ID.
27800643:1 waiting for logical area 79 (CW) 16004833
27800507:1 31−OCT−2002 16:05:15.71 W waiting for client '...."...EMPL' 4C504D45000000220000000400000055 (PW) 2D014F5C

To determine the name of the referenced object given the lock ID, the following queries can be used based on
the object type:

SQL> select RDB$RELATION_NAME from RDB$RELATIONS where RDB$RELATION_ID = 25;
SQL> select RDB$MODULE_NAME from RDB$MODULES where RDB$MODULE_ID = 12;
SQL> select RDB$ROUTINE_NAME from RDB$ROUTINES where RDB$ROUTINE_ID = 7;
SQL> select RDB$SEQUENCE_NAME from RDB$SEQUENCES where RDB$SEQUENCE_ID = 2;

For more detailed lock information, perform the following steps:

Press the L option from the horizontal menu to display a menu of lock IDs.•
Select the desired lock ID.•

Oracle® Rdb for OpenVMS

10.10 Oracle Rdb7 Guide to Database Performance and Tuning 387

10.10.4 RDMS$TTB_HASH_SIZE Logical Name

The logical name RDMS$TTB_HASH_SIZE sets the size of the hash table used for temporary tables. If the
logical name is not defined, Oracle Rdb uses a default value of 1249.

If you expect that temporary tables will be large (that is, 10K or more rows), use this logical name to adjust
the hash table size to avoid long hash chains. Set the value to approximately 1/4 of the expected maximum
number of rows for each temporary table. For example, if a temporary table will be populated with 100,000
rows, define this logical name to be 25000. If there are memory constraints on your system, you should define
the logical name to be no higher than this value (1/4 of the expected maximum number of rows).

10.10.5 Error in Updating and Retrieving a Row by Dbkey
Example 3−22

Example 3−22 in Section 3.8.3 that shows how to update and retrieve a row by dbkey is incorrect. The
example should appear as follows:

SQL> ATTACH 'FILENAME MF_PERSONNEL.RDB';
SQL> −−
SQL> −− Declare host variables
SQL> −−
SQL> DECLARE :hv_row INTEGER; −− Row counter
SQL> DECLARE :hv_employee_id ID_DOM; −− EMPLOYEE_ID field
SQL> DECLARE :hv_employee_id_ind SMALLINT; −− Null indicator variable
SQL> −−
SQL> DECLARE :hv_dbkey CHAR(8); −− DBKEY storage
SQL> DECLARE :hv_dbkey_ind SMALLINT; −− Null indicator variable
SQL> −−
SQL> DECLARE :hv_last_name LAST_NAME_DOM;
SQL> DECLARE :hv_new_address_data_1 ADDRESS_DATA_1_DOM;
SQL> −−
SQL> SET TRANSACTION READ WRITE;
SQL> BEGIN
cont> −−
cont> −− Set the search value for SELECT
cont> −−
cont> SET :hv_last_name = 'Ames';
cont> −−
cont> −− Set the NEW_ADDRESS_DATA_1 value
cont> −−
cont> SET :hv_new_address_data_1 = '100 Broadway Ave.';
cont> END;
SQL> COMMIT;
SQL> −−
SQL> SET TRANSACTION READ ONLY;
SQL> BEGIN
cont> SELECT E.EMPLOYEE_ID, E.DBKEY
cont> INTO :hv_employee_id INDICATOR :hv_employee_id_ind,
cont> :hv_dbkey INDICATOR :hv_dbkey_ind
cont> FROM EMPLOYEES E
cont> WHERE E.LAST_NAME = :hv_last_name
cont> LIMIT TO 1 ROW;
cont> −−
cont> GET DIAGNOSTICS :hv_row = ROW_COUNT;
cont> END;
SQL> COMMIT;

Oracle® Rdb for OpenVMS

10.10.4 RDMS$TTB_HASH_SIZE Logical Name 388

SQL> −−
SQL> SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE;
SQL> BEGIN
cont> IF (:hv_row = 1) THEN
cont> BEGIN
cont> UPDATE EMPLOYEES E
cont> SET E.ADDRESS_DATA_1 = :hv_new_address_data_1
cont> WHERE E.DBKEY = :hv_dbkey;
cont> END;
cont> END IF;
cont> END;
SQL> COMMIT;
SQL> −−
SQL> −− Display result of change
SQL> −−
SQL> SET TRANSACTION READ ONLY;
SQL> SELECT E.*
cont> FROM EMPLOYEES E
cont> WHERE E.DBKEY = :hv_dbkey;
 EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
 ADDRESS_DATA_1 ADDRESS_DATA_2 CITY
 STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
 00416 Ames Louie A
 100 Broadway Ave. Alton
 NH 03809 M 13−Apr−1941 1

1 row selected
SQL>

The new example will appear in a future publication of the Oracle Rdb7 Guide to Database Performance and
Tuning manual.

10.10.6 Error in Calculation of Sorted Index in Example 3−46

Example 3−46 in Section 3.9.5.1 shows the output when you use the RMU Analyze Indexes command and
specify the Option=Debug qualifier and the DEPARTMENTS_INDEX sorted index.

The description of the example did not include the 8 byte dbkey in the calculation of the sorted index. The
complete description is as follows:

The entire index (26 records) is located on pages 2 and 3 in logical area 72 and uses 188 bytes of a possible
430 bytes or the node record is 47 percent full. Note that due to index compression, the node size has
decreased in size from 422 bytes to 188 bytes and the percent fullness of the node records has dropped from
98 to 47 percent. Also note that the used/avail value in the summary information at the end of the output does
not include the index header and trailer information, which accounts for 32 bytes. This value is shown for
each node record in the detailed part of the output. The number of bytes used by the index is calculated as
follows: the sort key is 4 bytes plus a null byte for a total of 5 bytes. The prefix is 1 byte and the suffix is 1
byte. The prefix indicates the number of bytes in the preceding key that are the same and the suffix indicates
the number of bytes that are different from the preceding key. The dbkey pointer to the row is 8 bytes. There
are 26 data rows multiplied by 15 bytes for a total of 390 bytes. The 15 bytes include:

7 bytes for the sort key: length + null byte + prefix + suffix•
8 bytes for the dbkey pointer to the row•

Oracle® Rdb for OpenVMS

10.10.6 Error in Calculation of Sorted Index in Example 3−46 389

Add 32 bytes for index header and trailer information for the index node to the 390 bytes for a total of 422
bytes used. Index compression reduces the number of bytes used to 188 bytes used.

The revised description will appear in a future publication of the Oracle Rdb7 Guide to Database Performance
and Tuning manual.

10.10.7 Documentation Error in Section C.7

The Oracle Rdb Guide to Database Performance And Tuning, Volume 2 contains an error in Section C.7 titled
Displaying Sort Statistics with the R Flag.

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort operation. A zero (0) value
indicates that the sort was accomplished completely in memory.

•

This is incorrect, the statistics should be described as show below:

Work File Alloc indicates how much space (in blocks) was allocated in the work files for this sort
operation. A zero (0) value indicates that the sort was accomplished completely in memory.

•

This error will be corrected in a future release of Oracle Rdb Guide to Database Performance And Tuning.

10.10.8 Missing Tables Descriptions for the RDBEXPERT
Collection Class

Appendix B in the Oracle Rdb7 Guide to Database Performance and Tuning describes the event−based data
tables in the formatted database for the Oracle Rdb PERFORMANCE and RDBEXPERT collection classes.
This section describes the missing tables for the RDBEXPERT collection class.

Table 10−5 shows the TRANS_TPB table.

Table 10−5 Columns for Table EPC$1_221_TRANS_TPB

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

TPB VARCHAR(127)

TPB_STR_ID INTEGER STR_ID_DOMAIN

Oracle® Rdb for OpenVMS

10.10.7 Documentation Error in Section C.7 390

Table 10−6 shows the TRANS_TPB_ST table. An index is provided for this table. It is defined with column
STR_ID, duplicates are allowed, and the type is sorted.

Table 10−6 Columns for Table EPC$1_221_TRANS_TPB_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_DOMAIN

STR_SEGMENT VARCHAR(128)

10.10.9 Missing Columns Descriptions for Tables in the
Formatted Database

Some of the columns were missing from the tables in Appendix B in the Oracle Rdb7 Guide to Database
Performance and Tuning. The complete table definitions are described in this section.

Table 10−7 shows the DATABASE table.

Table 10−7 Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

DB_NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN

IMAGE_FILE_NAME VARCHAR(255)

IMAGE_FILE_NAME_STR_ID INTEGER STR_ID_DOMAIN

Table 10−8 shows the REQUEST_ACTUAL table.

Table 10−8 Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 391

TIMESTAMP_END DATE VMS

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 392

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CLIENT_PC_END INTEGER

STREAM_ID_END INTEGER

REQ_ID_END INTEGER

COMP_STATUS_END INTEGER

REQUEST_OPER_END INTEGER

TRANS_ID_END VARCHAR(16)

TRANS_ID_END_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 393

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

Table 10−9 shows the TRANSACTION table.

Table 10−9 Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 394

TIMESTAMP_END DATE VMS

CLIENT_PC_START INTEGER

STREAM_ID_START INTEGER

LOCK_MODE_START INTEGER

TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID INTEGER STR_ID_DOMAIN

GLOBAL_TID_START VARCHAR(16)

GLOBAL_TID_START_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 395

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

AREA_ITEMS_START VARCHAR(128)

AREA_ITEMS_START_STR_IDINTEGER STR_ID_DOMAIN

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CROSS_FAC_2_START INTEGER

CROSS_FAC_3_START INTEGER

CROSS_FAC_7_START INTEGER

CROSS_FAC_14_START INTEGER

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 396

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

AREA_ITEMS_END VARCHAR(128)

AREA_ITEMS_END_STR_ID INTEGER STR_ID_DOMAIN

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

CROSS_FAC_2_END INTEGER

CROSS_FAC_3_END INTEGER

Oracle® Rdb for OpenVMS

10.10.9 Missing Columns Descriptions for Tables in the Formatted Database 397

CROSS_FAC_7_END INTEGER

CROSS_FAC_14_END INTEGER

Table 10−10 shows the REQUEST_BLR table.

Table 10−10 Columns for Table EPC$1_221_REQUEST_BLR

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

REQ_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_NAME VARCHAR(31)

REQUEST_NAME_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_TYPE INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

10.10.10 A Way to Find the Transaction Type of a Particular
Transaction Within the Trace Database

The table EPC$1_221_TRANSACTION in the formatted Oracle Trace database has a column
LOCK_MODE_START of longword datatype. The values of this column indicate the type of transaction a
particular transaction was.

Value Transaction type
−−−−− −−−−−−−−−−−−−−−−
8 Read only
9 Read write
14 Batch update

10.10.11 Using Oracle TRACE Collected Data

The following example shows how the OPTIMIZE AS clause is reflected in the Oracle TRACE database.
When a trace collection is started the following SQL commands will record the request names.

SQL> attach `file personnel';
SQL> select last_name, first_name
cont> from employees

Oracle® Rdb for OpenVMS

10.10.10 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database398

cont> optimize as request_one;
.
.
.
SQL> select employee_id
cont> from employees
cont> optimize as request_two;
.
.
.
SQL> select employee_id, city, state
cont> from employees
cont> optimize as request_three;
.
.
.
SQL> select last_name, first_name, employee_id, city, state
cont> from employees
cont> optimize as request_four;
.
.
.

Once an Oracle TRACE database has been populated from the collection, a query such as the following can
be used to display the request names and types. The type values are described in Table 3−10. The unnamed
queries in this example correspond to the queries executed by interactive SQL to validate the names of the
tables an columns referenced in the user supplied queries.

SQL> select REQUEST_NAME, REQUEST_TYPE, TIMESTAMP_POINT
cont> from EPC$1_221_REQUEST_BLR;
REQUEST_NAME REQUEST_TYPE TIMESTAMP_POINT
 1 15−JAN−1997 13:23:27.18
 1 15−JAN−1997 13:23:27.77
REQUEST_ONE 1 15−JAN−1997 13:23:28.21
REQUEST_TWO 1 15−JAN−1997 13:23:56.55
REQUEST_THREE 1 15−JAN−1997 13:24:57.27
REQUEST_FOUR 1 15−JAN−1997 13:25:25.44
6 rows selected

The next example shows the internal query format (BLR) converted to SQL strings after
EPC$EXAMPLES:EPC_BLR_TOSQL_CONVERTER.COM has been run.

SQL> SELECT A.REQUEST_NAME, B.SQL_STRING FROM
cont> EPC$1_221_REQUEST_BLR A,
cont> EPC$SQL_QUERIES B
cont> WHERE A.CLIENT_PC = 0 AND A.SQL_ID = B.SQL_ID;
A.REQUEST_NAME
 B.SQL_STRING
REQUEST_ONE
 SELECT C1.LAST_NAME, C1.FIRST_NAME. FROM EMPLOYEES C1
. . .
REQUEST_TWO
 SELECT C1.EMPLOYEE_ID. FROM EMPLOYEES C1
. . .
REQUEST_THREE
SELECT C1.EMPLOYEE_ID, C1.CITY, C1.STATE. FROM EMPLOYEES C1
 .
 .
 .

Oracle® Rdb for OpenVMS

10.10.10 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database399

4 rows selected

Table 4−17 shows the Request Types.

Table 10−11 Request Types

Symbolic Name Value Comment

RDB_K_REQTYPE_OTHER 0 A query executed internally by Oracle Rdb

RDB_K_REQTYPE_USER_REQUEST1
A non−stored SQL statement, which includes compound
statements

RDB_K_REQTYPE_PROCEDURE 2 A stored procedure

RDB_K_REQTYPE_FUNCTION 3 A stored function

RDB_K_REQTYPE_TRIGGER 4 A trigger action

RDB_K_REQTYPE_CONSTRAINT 5 A table or column constraint

10.10.12 AIP Length Problems in Indexes that Allow Duplicates

When an index allows duplicates, the length stored in the AIP will be 215 bytes, regardless of the actual index
node size. Because an index with duplicates can have variable node sizes, the 215−byte size is used as a
median length to represent the length of rows in the index's logical area.

When the row size in the AIP is less than the actual row length, it is highly likely that SPAM entries will show
space is available on pages when they have insufficient space to store another full size row. This is the most
common cause of insert performance problems.

For example, consider a case where an index node size of 430 bytes (a common default value) is used; the
page size for the storage area where the index is stored is 2 blocks. After deducting page overhead, the
available space on a 2−block page is 982 bytes. Assume that the page in this example is initially empty.

A full size (430−byte) index node is stored. As 8 bytes of overhead are associated with each row
stored on a page, that leaves 982−430−8 = 544 free bytes remaining on the page.

1.

A duplicate key entry is made in that index node and thus a duplicate node is created on the same
page. An initial duplicate node is 112 bytes long (duplicate nodes can have a variety of sizes
depending on when they are created, but for this particular example, 112 bytes is used). Therefore,
544−112−8 = 424 free bytes remain on the page.

2.

At this point, 424 bytes are left on the page. That is greater than the 215 bytes that the AIP shows as the row
length for the logical area, so the SPAM page shows that the page has space available. However, an attempt to
store a full size index node on the page will fail, because the remaining free space (424 bytes) is not enough to
store a 430−byte node.

In this case, another candidate page must be selected via the SPAM page, and the process repeats until a page
that truly has sufficient free space available is found. In a logical area that contains many duplicate nodes, a
significant percentage of the pages in the logical area may fit the scenario just described. When that is the
case, and a new full size index node needs to be stored, many pages may need to be read and checked before
one is found that can be used to store the row.

Oracle® Rdb for OpenVMS

10.10.12 AIP Length Problems in Indexes that Allow Duplicates 400

It is possible to avoid the preceding scenario by using logical area thresholds. The goal is to set a threshold
such that the SPAM page will show a page is full when space is insufficient to store a full size index node.

Using the previous example, here is how to properly set logical area thresholds to prevent excessive pages
checked on an index with a 430−byte node size that is stored on a 2−block page. To calculate the proper
threshold value to use, you must first determine how full the page can get before no more full size nodes will
fit on the page. In this example, a database page can have up to 982−430−8 = 544 bytes in use before the page
is too full. Therefore, if 544 or fewer bytes are in use, then enough space remains to store another full size
node. The threshold is then 544 / 982 = .553971, or 55%.

In addition, you can determine how full a page must be before a duplicate node of size 112 will no longer fit.
In this example, a database page can have up to 982−112−8 = 862 bytes in use before the page is too full.
Therefore, if 862 or fewer bytes are in use, then enough space remains to store another small duplicates node.
The threshold is then 862 / 982 = .8778, or 88%.

Here is an example of creating an index with the above characteristics:

SQL> CREATE INDEX TEST_INDEX ON EMPLOYEES (LAST_NAME)
cont> STORE IN RDB$SYSTEM
cont> (THRESHOLD IS (55, 55, 88));

These settings mean that any page at over 55% full will not be fetched when inserting a full index node,
however, it may be fetched when inserting the smaller duplicates node. When the page is over 88% full then
neither a full node nor a duplicate node can be stored, so the page is set as FULL. The lowest setting is not
used and so can be set to any value less than or equal to the lowest used threshold.

Note that the compression algorithm used on regular tables that have compression enabled does not apply to
index nodes. Index nodes are not compressed like data rows and will always utilize the number of bytes that is
specified in the node size. Do not attempt to take into account a compression factor when calculating
thresholds for indexes.

10.10.13 RDM$BIND_MAX_DBR_COUNT Documentation
Clarification

Appendix A in Oracle Rdb7 Guide to Database Performance and Tuning incorrectly describes the use of the
RDM$BIND_MAX_DBR_COUNT logical name.

Following is an updated description. Note that the difference in actual behavior between what is in the
existing documentation and the software is that the logical name only controls the number of database
recovery processes created at once during "node failure" recovery (that is, after a system or monitor crash or
other abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system failure), the database will
have to be recovered in a "node failure" recovery mode. This recovery will be performed by another monitor
in the cluster if the database is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_DBR_COUNT
configuration parameter define the maximum number of database recovery (DBR) processes to be
simultaneously invoked by the database monitor during a "node failure" recovery.

Oracle® Rdb for OpenVMS

10.10.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 401

This logical name and configuration parameter apply only to databases that do not have global buffers
enabled. Databases that utilize global buffers have only one recovery process started at a time during a "node
failure" recovery.

In a node failure recovery situation with the Row Cache feature enabled (regardless of the global buffer state),
the database monitor will start a single database recovery (DBR) process to recover the Row Cache Server
(RCS) process and all user processes from the oldest active checkpoint in the database.

Oracle® Rdb for OpenVMS

10.10.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 402

10.11 Oracle Rdb7 Guide to SQL Programming
This section provides information that is missing or changed in the Oracle Rdb7 Guide to SQL Programming.

10.11.1 Location of Host Source File Generated by the SQL
Precompiler

When the SQL precompiler generates host source files (for example, .c, .pas, or .for) from the precompiler
source files, it locates these files based on the Object qualifier in the command given to the SQL precompiler.

The following examples show the location where the host source file is generated.

When the Object qualifier is not specified on the command line, the object and the host source file take the
name of the SQL precompiler with the extensions of .obj and .c, respectively. For example:

$ sqlpre/cc scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 3 files.

When the Object qualifier is specified on the command line, the object and the host source take the name
given on the qualifier switch. It uses the default of the SQL precompiler source if a filespec is not specified. It
uses the defaults of .obj and .c if the extension is not specified. If the host language is a language other than C,
it uses the appropriate host source extension (for example, .pas or .for). The files also default to the current
directory if a directory specification is not specified. For example:

$ sqlpre/cc/obj=myobj scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
$ dir myobj.*

Directory MYDISK:[LUND]

MYOBJ.C;1 MYOBJ.OBJ;2

Total of 2 files.

$ sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.

10.11 Oracle Rdb7 Guide to SQL Programming 403

$ dir MYDISK:[lund.tmp]scc_try_mli_successful.*

Directory MYDISK:[LUND.TMP]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2

Total of 2 files.

10.11.2 Remote User Authentication

In the Oracle Rdb7 Guide to SQL Programming, Table 15−1 indicates that implicit authorization works from
an OpenVMS platform to another OpenVMS platform using TCP/IP. This table is incorrect. Implicit
authorization only works using DECnet in this situation.

The Oracle Rdb7 Guide to SQL Programming will be fixed in a future release.

10.11.3 Additional Information About Detached Processes

Oracle Rdb documentation omits necessary detail on running Oracle Rdb from a detached process.

Applications run from detached processes must ensure that the OpenVMS environment is established
correctly before running Oracle Rdb, otherwise Oracle Rdb will not execute.

Attempts to attach to a database and execute an Oracle Rdb query from applications running as detached
processes will result in an error similar to the following:

%RDB−F−SYS_REQUEST, error from system services request
−SORT−E−OPENOUT, error opening [file] as output
−RMS−F−DEV, error in device name or inappropriate device type for operation

The problem occurs because a detached process does not normally have the logical names SYS$LOGIN or
SYS$SCRATCH defined.

There are two methods that can be used to correct this:

Solution 1:
Use the DCL command procedure RUN_PROCEDURE to run the ACCOUNTS application:
RUN_PROCEDURE.COM includes the single line:
$ RUN ACCOUNTS_REPORT
Then execute this procedure using this command:
$ RUN/DETACH/AUTHORIZE SYS$SYSTEM:LOGINOUT/INPUT=RUN_PROCEDURE
This solution executes SYS$SYSTEM:LOGINOUT so that the command language interface (DCL) is
activated. This causes the logical names SYS$LOGIN and SYS$SCRATCH to be defined for the
detached process. The /AUTHORIZE qualifier also ensures that the users' process quota limits
(PQLs) are used from the system authorization file rather than relying on the default PQL system
parameters, which are often insufficient to run Oracle Rdb.

•

Solution 2:
If DCL is not desired, and SYS$LOGIN and SYS$SCRATCH are not defined, then prior to executing
any Oracle Rdb statement, you should define the following logical names:

RDMS$BIND_WORK_FILE♦

•

Oracle® Rdb for OpenVMS

10.11.2 Remote User Authentication 404

Define this logical name to allow you to reduce the overhead of disk I/O operations for
matching operations when used in conjunction with the RDMS$BIND_WORK_VM logical
name. If the virtual memory file is too small then overflow to disk will occur at the disk and
directory location specified by RDMS$BIND_WORK_FILE.
For more information on RDMS$BIND_WORK_FILE and RDMS$BIND_WORK_VM, see
the Oracle Rdb Guide to Database Performance and Tuning.
SORTWORK0, SORTWORK1, and so on
The OpenVMS Sort/Merge utility (SORT/MERGE) attempts to create sort work files in
SYS$SCRATCH. If the SORTWORK logical names exist, the utility will not require the
SYS$SCRATCH logical. However, note that not all queries will require sorting, and that
some sorts will be completed in memory and so will not necessarily require disk space.
If you use the logical RDMS$BIND_SORT_WORKFILES, you will need to define further
SORTWORK logical names as described in the Oracle Rdb Guide to Database Performance
and Tuning.
You should also verify that sufficient process quotas are specified on the RUN/DETACH
command line, or defined as system PQL parameters to allow Oracle Rdb to execute.

♦

Oracle® Rdb for OpenVMS

10.11.2 Remote User Authentication 405

10.12 Guide to Using Oracle SQL/Services Client APIs
The following information describes Oracle SQL/Services documentation errors or omissions.

The Guide to Using Oracle SQL/Services Client APIs does not describe changes to size and format of
integer and floating−point data types
Beginning with Oracle SQL/Services V5.1, the size and format of some integer and floating−point
data types is changed as follows:

Trailing zeros occur in fixed−point numeric data types with SCALE FACTOR.
Trailing zeros are now included after the decimal point up to the number of digits specified by
the SCALE FACTOR. In versions of Oracle SQL/Services previous to V5.1, at most one
trailing zero was included where the value was a whole number.
The following examples illustrate the changes using a field defined as INTEGER(3):

 V5.1 and Versions previous
 higher to V5.1
 −−−−−−−− −−−−−−−−−−−−−−−−−
 1.000 1.0
 23.400 23.4
 567.890 567.89

♦

Trailing zeros occur in floating−point data types. Trailing zeros are now included in the
fraction, and leading zeros are included in the exponent, up to the maximum precision
available, for fields assigned the REAL and DOUBLE PRECISION data types.

 Versions previous
 Data Type V5.1 and higher to V5.1
 −−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−
 REAL 1.2340000E+01 1.234E+1
 DOUBLE PRECISION 5.678900000000000E+001 5.6789E+1

♦

Size of TINYINT and REAL data types is changed.
The maximum size of the TINYINT and REAL data types is changed to correctly reflect the
precision of the respective data types.
The following table shows the maximum lengths of the data types now and in previous
versions:

 V5.1 and Versions previous
 Data type higher to V5.1
 −−−−−−−−−− −−−−−−−− −−−−−−−−−−−−−−−−−
 TINYINT 4 6
 REAL 15 24

♦

•

The Guide to Using Oracle SQL/Services Client APIs does not describe that the sqlsrv_associate()
service returns SQL error code −1028 when connecting to a database service if the user has not been
granted the right to attach to the database.
When a user connects to a database service, the sqlsrv_associate() service completes with the SQL
error code −1028, SQL_NO_PRIV, if the user has been granted access to the Oracle SQL/Services
service, but has not been granted the right to attach to the database. A record of the failure is written
to the executor process's log file. Note that the sqlsrv_associate() service completes with the Oracle
SQL/Services error code −2034, SQLSRV_GETACCINF if the user has not been granted access to
the Oracle SQL/Services service.

•

10.12 Guide to Using Oracle SQL/Services Client APIs 406

10.13 Updates to System Relations
The following sections include updates to system relations that were inadvertently omitted in the SQL Help
and Rdb Help files in Release 7.0.

10.13.1 Clarification on Updates to the RDB$LAST_ALTERED
Column for the RDB$DATABASE System Relation

The ALTER DATABASE statement can be used to change many database attributes, however, only those
listed below will cause the RDB$DATABASE system relation to be changed. The column
RDB$LAST_UPDATED is used to record the date and time when the system relation RDB$DATABASE is
updated and so will change when any of the following clauses are used by ALTER DATABASE.

CARDINALITY COLLECTION IS { ENABLED | DISABLED }•
DICTIONARY IS [NOT] REQUIRED•
DICTIONARY IS NOT USED•
METADATA CHANGES ARE { ENABLED | DISABLED }•
MULTISCHEMA IS { ON | OFF }•
SECURITY CHECKING IS EXTERNAL (PERSONAL SUPPORT IS { ENABLED | DISABLED
})

•

SYNONYMS ARE ENABLED•
WORKLOAD COLLECTION IS { ENABLED | DISABLED }•

In addition any GRANT and REVOKE statements which use the ON DATABASE clause will cause the
RDB$LAST_UPDATED column to be updated for RDB$DATABASE.

10.13.2 Missing Descriptions of RDB$FLAGS

The HELP file for Oracle Rdb describes the system relations for Oracle Rdb and was missing these updated
descriptions of the RDB$FLAGS column for several system relations.

Table 10−12 Changed Columns for RDB$INDICES Table

Column Name
Data
Type

Domain Name Comments

RDB$FLAGS integer RDB$FLAGS A bit mask where the bits have the following meaning when set:

Bit 0: This index is of type HASHED.•
Bit 1: This index uses the MAPPING VALUES clause to
compress integer value ranges.

•

Bit 2: If this is a HASHED index then it is of type
ORDERED. If clear this indicates the index is of type
SCATTERED.

•

Bit 3: Reserved for future use.•
Bit 4: This index has run length compression enabled
(ENABLE COMPRESSION).

•

Bit 5: This index is no longer used (MAINTENANCE IS•

10.13 Updates to System Relations 407

DISABLED).
Bit 6 through 10: Reserved for future use.•
Bit 11: This index has duplicates compressed
(DUPLICATES ARE COMPRESSED).

•

Bit 12: This index is of type SORTED RANKED.•
Bit 13: Prefix cardinality is disabled.•
Bit 14: Prefix cardinality uses FULL collection algorithm.•
Bit 15: Generated for a constraint when AUTO_INDEX is
set.

•

Bits 16 through 31: Reserved for future use.•

Table 10−13 Changed Columns for RDB$RELATIONS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS integer RDB$FLAGS

A bit mask where the bits have the following meaning
when set:

Bit 0: This relation is a view.•
Bit 1: This relation is not compressed.•
Bit 2: The SQL clause, WITH CHECK
OPTION, is used in this view definition.

•

Bit 3: Indicates a special internal system
relation.

•

Bit 4: This view is not an ANSI updatable view.•
Bit 5: This is an imported table in the
Distributed Option for Rdb catalog.

•

Bit 6: This is a passthru table in the Distributed
Option for Rdb catalog.

•

Bit 7: This is a partitioned view in the
Distributed Option for Rdb catalog.

•

Bit 8: This table has compression defined by the
storage map. When set Bit 1 in this bit mask is
ignored.

•

Bit 9: This is a temporary table.•
Bit 10: When bit 9 is set this is a global
temporary table, when clear it indicates a local
temporary table.

•

Bit 11: When bit 9 is set this indicates that the
rows in the temporary table should be deleted
upon COMMIT.

•

Bit 12: Reserved for future use.•
Bit 13: A table (via a computed by column) or
view references a local temporary table.

•

Bit 14: This is an information table.•
Bit 15: This is a system table with a special
storage map.

•

Bits 16 through 31: Reserved for future use.•

Oracle® Rdb for OpenVMS

10.13 Updates to System Relations 408

Table 10−14 Changed Columns for RDB$STORAGE_MAPS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS integer RDB$FLAGS

A bit mask where the bits have the following
meaning when set:

Bit 0: This table or index is mapped to page
format MIXED areas.

•

Bit 1: This partition is not compressed.•
Bit 2: This is a strictly partitioned storage
map, the partitioning columns become read
only for UPDATE.

•

Bit 3: Reserved for future use.•
Bit 4: This partition was named by the user.•
Bit 5: Strict partitioning was enabled by
using NO REORGANIZE.

•

Bit 6 through 31: Reserved for future use.•

Table 10−15 Changed Columns for RDB$STORAGE_MAP_AREAS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS integer RDB$FLAGS

A bit mask where the bits have the following meaning when set:

Bit 0: The LIST storage map specified FILL
SEQUENTIALLY.

•

Bit 1: This partition was named by the user.•
Bit 2: This partition is in BUILD−PENDING state.•
Bit 3: This partition was created with NOLOGGING
set.

•

Bit 4 through 31: Reserved for future use.•

Oracle® Rdb for OpenVMS

10.13 Updates to System Relations 409

10.14 Error Messages
The following subsections further describe or clarify error messages.

10.14.1 Clarification of the DDLDONOTMIX Error Message

The ALTER DATABASE statement performs two classes of functions: changing the database root structures
in the .RDB file and modifying the system metadata in the RDB$SYSTEM storage area. The first class of
changes do not require a transaction to be active. However, the second class requires that a transaction be
active. Oracle Rdb does not currently support the mixing of these two classes of ALTER DATABASE
clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the {SQL−syntax}
clause can not be used with some ALTER DATABASE clauses" is displayed, and the ALTER DATABASE
statement fails.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA;
%RDB−F−BAD_DPB_CONTENT, invalid database parameters in the
database parameter block (DPB)
−RDMS−E−DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can
not be used with some ALTER DATABASE clauses

The following clauses may be mixed with each other but may not appear with other clauses such as ADD
STORAGE AREA or ADD CACHE:

DICTIONARY IS [NOT] REQUIRED•
DICTIONARY IS NOT USED•
MULTISCHEMA IS { ON | OFF }•
CARDINALITY COLLECTION IS { ENABLED | DISABLED }•
METADATA CHANGES ARE { ENABLED | DISABLED }•
WORKLOAD COLLECTION IS { ENABLED | DISABLED }•

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into two statements,
one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

10.14 Error Messages 410

Chapter 11
Known Problems and Restrictions
This chapter describes problems and restrictions relating to Oracle Rdb Release 7.1.1, and includes
workarounds where appropriate.

Chapter 11 Known Problems and Restrictions 411

11.1 Known Problems and Restrictions in All
Interfaces
This section describes known problems and restrictions that affect all interfaces for Release 7.1.1.

11.1.1 Multi−Disk File RMU Backup and Restore Should Not Be
Used

The multi−disk file RMU Backup and Restore feature that allows the backup of an Oracle Rdb database to
multiple backup files ("RBF" files) on disk and the restore of those files using the "/DISK_FILE" qualifier
should not be used since a problem has been found where using the /DISK_FILE qualifier can cause
corruption of the database when it is restored. This corruption is usually associated with the
RMU−E−INVBLKHDR or the RMU−F−BACKFILCOR and RMU−E−BACFILCOR_03 errors being
returned on the restore. This corruption does not always happen but can occur frequently.

Therefore the "/DISK_FILE" qualifier on Oracle RMU backup and restore commands should not be used until
this problem has been resolved. Note that this problem only occurs if the "/DISK_FILE" qualifier is used.
There is no problem for tape and single disk file backups and restores where the /DISK_FILE qualifier is not
used.

The following example shows two cases where database corruption can occur when using the /DISK_FILE
qualifier.

$ RMU/BACKUP/NOLOG/JOURNAL=B31A/DISK_FILE=(WRITER_THREADS=1) MF_PERSONNEL −
 DISK:[DIRECTORY]:B31A.RBF,DISK:[DIRECTORY],DISK:[DIRECTORY]:

$ RMU/RESTORE/NOLOG/NOCDD/JOURNAL=B31A/DISK_FILE=(READER_THREADS=2) −
 DISK:[DIRECTORY]:B31A.RBF,DISK:[DIRECTORY],DISK:[DIRECTORY]:
%RMU−E−INVBLKHDR, invalid block header in backup file

$ RMU/RESTORE/NOLOG/NOCDD/JOURNAL=B31A/DISK_FILE=(READER_THREADS=2) −
 DISK:[DIRECTORY]:B31A.RBF,DISK:[DIRECTORY],DISK:[DIRECTORY]:
%RMU−F−BACFILCOR, Backup file is corrupt
−RMU−E−BACFILCOR_03, Unexpected condition after end of volume detected
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 29−APR−2003 17:41:48.82

There is no known workaround for this problem. Therefore this feature should not be used until this problem
is resolved.

11.1.2 SYSTEM−F−INSFMEM Fatal Error With SHARED MEMORY
IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy
Environment

When using the GALAXY SUPPORT IS ENABLED feature in an OpenVMS Galaxy environment, a
%SYSTEM−F−INSFMEM, insufficient dynamic memory error may be returned when mapping record caches
or opening the database. One source of this problem specific to a Galaxy configuration is running out of
Galaxy Shared Memory regions. For Galaxy systems, GLX_SHM_REG is the number of shared memory

11.1 Known Problems and Restrictions in All Interfaces 412

region structures configured into the Galaxy Management Database (GMDB).

While the default value (for OpenVMS versions through at least V7.3−1) of 64 regions might be adequate for
some installations, sites using a larger number of databases or row caches when the SHARED MEMORY IS
SYSTEM or LARGE MEMORY IS ENABLED features are enabled may find the default insufficient.

If a %SYSTEM−F−INSFMEM, insufficient dynamic memory error is returned when mapping record caches or
opening databases, Oracle Corporation recommends that you increase the GLX_SHM_REG parameter by 2
times the sum of the number of row caches and number of databases that might be accessed in the Galaxy at
one time. As the Galaxy shared memory region structures are not very large, setting this parameter to a higher
than required value does not consume a significant amount of physical memory. It also may avoid a later
reboot of the Galaxy environment. This parameter must be set on all nodes in the Galaxy.

Galaxy Reboot Required

Changing the GLX_SHM_REG system parameter requires that the OpenVMS Galaxy
environment be booted from scratch. That is, all nodes in the Galaxy must be shut down
and then the Galaxy reformed by starting each instance.

11.1.3 Oracle Rdb and OpenVMS ODS−5 Volumes

The OpenVMS Version 7.2 release introduced an Extended File Specifications feature, which consists of two
major components:

A new, optional, volume structure, ODS−5, which provides support for file names that are longer and
have a greater range of legal characters than in previous versions of OpenVMS.

•

Support for "deep" directory trees.•

ODS−5 was introduced primarily to provide enhanced file sharing capabilities for users of Advanced Server
for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as DCOM and JAVA
applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and explicitly requires ODS−2
(the traditional OpenVMS volume structure) file and directory name conventions to be followed. Because of
this knowledge, Oracle does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files, database backup files, after image
journal backup files, etc.) that utilize any non−ODS−2 file naming features. For this reason, Oracle
recommends that Oracle Rdb database components not be located on ODS−5 volumes.

Oracle does support Oracle Rdb database file components on ODS−5 volumes provided that all of these files
and directories used by Oracle Rdb strictly follow the ODS−2 file and directory name conventions. In
particular, all file names must be specified entirely in uppercase and "special" characters in file or directory
names are forbidden.

11.1.4 Optimization of Check Constraints

Bug 1448422

Oracle® Rdb for OpenVMS

11.1.3 Oracle Rdb and OpenVMS ODS−5 Volumes 413

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the optimizer than
when the same or similar constraint is phrased using referential integrity (PRIMARY and FOREIGN KEY)
constraints.

For example, I have two tables T1 and T2, both with one column, and I wish to ensure that all values in table
T1 exist in T2. Both tables have an index on the referenced field. I could use a PRIMARY KEY constraint on
T2 and a FOREIGN KEY constraint on T1.

SQL> alter table t2
cont> alter column f2 primary key not deferrable;
SQL> alter table t1
cont> alter column f1 references t2 not deferrable;

When deleting from the PRIMARY KEY table, Rdb will only check for rows in the FOREIGN KEY table
where the FOREIGN KEY has the deleted value. This can be seen as an index lookup on T1 in the retrieval
strategy.

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Index only retrieval of relation T1
 Index name I1 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb efficiently detects that only those
rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This could be
necessary because the presence of NULL values in the table T2 precludes the definition of a primary key on
that table. This could be done with a CHECK constraint of the form:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [0:0]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

The cross block is for the constraint evaluation. This retrieval strategy indicates that to evaluate the constraint,
the entire index on table T1 is being scanned and for each key, the entire index in table T2 is being scanned.
The behavior can be improved somewhat by using an equality join condition in the select clause of the
constraint:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2 where f2=f1))
cont> not deferrable;

Oracle® Rdb for OpenVMS

11.1.3 Oracle Rdb and OpenVMS ODS−5 Volumes 414

or:

SQL> alter table t1
cont> alter column f1
cont> check (f1=(select * from t2 where f2=f1))
cont> not deferrable;

In both cases the retrieval strategy will look like this:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to perform an index lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS" operators with
respect to null handling, and the complexity of dealing with non−equality join conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to use a series of
triggers to perform the constraint check. The following triggers perform a similar check to the constraints
above.

SQL> create trigger t1_insert
cont> after insert on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> create trigger t1_update
cont> after update on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> ! A delete trigger is not needed on T1.
SQL> create trigger t2_delete
cont> before delete on t2
cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;
SQL> create trigger t2_modify
cont> after update on t2
cont> referencing old as t2o new as t2n
cont> when (exists (select * from t1 where f1=t2o.f2))
cont> (error) for each row;
SQL> ! An insert trigger is not needed on T2.

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate−F1 Index only retrieval of relation T1
 Index name I1 [1:1]
Temporary relation Get Retrieval by index of relation T2

Oracle® Rdb for OpenVMS

11.1.3 Oracle Rdb and OpenVMS ODS−5 Volumes 415

 Index name I2 [1:1]
%RDB−E−TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
−RDMS−E−TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that the index on T1 is used to
examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the operation of the
triggers, the use of "IN" and "EXISTS", and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex, and cannot be phrased using
referential integrity constraints. For example, if the application is such that the value in table T1 may be
spaces or NULL to indicate the absence of a value, the above triggers could easily be modified to allow for
these semantics.

11.1.5 Using Databases from Releases Earlier Than V6.0

You cannot convert or restore databases earlier than V6.0 directly to V7.1. The RMU Convert command for
V7.1 supports conversions from V6.0 through V7.0 only. If you have a V3.0 through V5.1 database, you must
convert it to at least V6.0 and then convert it to V7.1. For example, if you have a V4.2 database, convert it
first to at least V6.0, then convert the resulting database to V7.1.

If you attempt to convert a database created prior to V6.0 directly to V7.1, Oracle RMU generates an error.

11.1.6 PAGE TRANSFER VIA MEMORY Disabled

Oracle internal testing has revealed that the PAGE TRANSFER VIA MEMORY option for global buffers is
not as robust as is needed for the mission critical environments where Oracle Rdb7 is often deployed. This
feature has been disabled in release 7.1. Oracle intends to re−enable this feature in a future release.

11.1.7 Carryover Locks and NOWAIT Transaction Clarification

In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used. For the blocking user to
receive the BLAST signal, the requesting user must request the locked resource with WAIT (which a
NOWAIT transaction does not do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate
that a NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests the
NOWAIT resource. All other database users hold a lock on the NOWAIT resource so that when the NOWAIT
transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST causes blocking users to
release any carryover locks. There can be a delay before the transactions with carryover locks detect the
presence of the NOWAIT transaction and release their carryover locks. You can detect this condition by
examining the stall messages. If the "Waiting for NOWAIT signal (CW)" stall message appears frequently,
the application is probably experiencing a decrease in performance, and you should consider disabling the
carryover lock behavior.

11.1.8 Unexpected Results Occur During Read−Only
Transactions on a Hot Standby Database

When using Hot Standby, it is typical to use the standby database for reporting, simple queries, and other

Oracle® Rdb for OpenVMS

11.1.5 Using Databases from Releases Earlier Than V6.0 416

read−only transactions. If you are performing these types of read−only transactions on a standby database, be
sure you can tolerate a READ COMMIT level of isolation. This is because the Hot Standby database might be
updated by another transaction before the read−only transaction finishes, and the data retrieved might not be
what you expected.

Because Hot Standby does not write to the snapshot files, the isolation level achieved on the standby database
for any read−only transaction is a READ COMMITED transaction. This means that nonrepeatable reads and
phantom reads are allowed during the read−only transaction:

Nonrepeatable read operations: Allows the return of different results within a single transaction when
an SQL operation reads the same row in a table twice. Nonrepeatable reads can occur when another
transaction modifies and commits a change to the row between transactions. Because the standby
database will update the data when it confirms a transaction has been committed, it is very possible to
see an SQL operation on a standby database return different results.

•

Phantom read operations: Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence check) twice. Phantoms can
occur if another transaction inserted a new record and committed the insertion between executions of
the range retrieval. Again, because the standby database may do this, phantom reads are possible.

•

Thus, you cannot rely on any data read from the standby database to remain unchanged. Be sure your
read−only transactions can tolerate a READ COMMIT level of isolation before you implement procedures
that read and use data from a standby database.

11.1.9 IMPORT Unable to Import Some View Definitions

View definitions that reference SQL functions, created by the CREATE MODULE statement, cannot be
imported by the SQL IMPORT statement. This is because the views are defined before the functions
themselves exist.

The following example shows the errors from IMPORT:

IMPORTing view TVIEW
%SQL−F−NOVIERES, unable to import view TVIEW
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−E−RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB−E−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−F−TABNOTDEF, relation TVIEW is not defined in database

The following script can be used to demonstrate the problem:

create database filename badimp;

create table t (sex char);

create module TFORMAT
 language SQL

 function FORMAT_OUT (:s char)
 returns char(4);
 return (case :s
 when 'F' then 'Female'

Oracle® Rdb for OpenVMS

11.1.9 IMPORT Unable to Import Some View Definitions 417

 when 'M' then 'Male'
 else NULL
 end);
end module;

create view TVIEW (m_f) as
 select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction will be lifted in a future release of Oracle Rdb. Currently the workaround is to save the view
definitions and reapply them after the import operation completes.

This restriction does not apply to external functions, created using the CREATE FUNCTION statement, as
these database objects are defined before tables and views.

11.1.10 Both Application and Oracle Rdb Using SYS$HIBER

In application processes that use Oracle Rdb and the $HIBER system service (possibly through RTL routines
such as LIB$WAIT), the application must ensure that the event being waited for has actually occurred. Oracle
Rdb uses $HIBER/$WAKE sequences for interprocess communications particularly when the ALS (AIJ Log
Server) feature is enabled.

The use of the $WAKE system service by Oracle Rdb can interfere with other users of $HIBER (such as the
routine LIB$WAIT) that do not check for event completion, possibly causing a $HIBER to be unexpectedly
resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence that avoids continuing
without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo−code shows how a flag can be used to indicate that a timed−wait has completed
correctly. The wait does not complete until the timer has actually fired and set TIMER_FLAG to TRUE. This
code relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
 BEGIN
 ! Clear the timer flag
 TIMER_FLAG = FALSE
 ! Schedule an AST for sometime in the future
 STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
 IF STAT <> SS$_NORMAL
 THEN BEGIN
 LIB$SIGNAL (STAT)
 END
 ! Hibernate. When the $HIBER completes, check to make
 ! sure that TIMER_FLAG is set indicating that the wait
 ! has finished.
 WHILE TIMER_FLAG = FALSE
 DO BEGIN
 SYS$HIBER()
 END
 END

Oracle® Rdb for OpenVMS

11.1.10 Both Application and Oracle Rdb Using SYS$HIBER 418

ROUTINE TIMER_AST:
 BEGIN
 ! Set the flag indicating that the timer has expired
 TIMER_FLAG = TRUE
 ! Wake the main−line code
 STAT = SYS$WAKE ()
 IF STAT <> SS$_NORMAL
 THEN BEGIN
 LIB$SIGNAL (STAT)
 END
 END

The LIB$K_NOWAKE flag can be specified when using the OpenVMS LIB$WAIT routine to allow an
alternate wait scheme (using the $SYNCH system service) that can avoid potential problems with multiple
code sequences using the $HIBER system service.

11.1.11 Bugcheck Dump Files with Exceptions at
COSI_CHF_SIGNAL

In certain situations, Oracle Rdb bugcheck dump files indicate an exception at COSI_CHF_SIGNAL. This
location is, however, not the address of the actual exception. The actual exception occurred at the previous
call frame on the stack (the one listed as the next Saved PC after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","−F−","−E−"

***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
%COSI−F−BUGCHECK, internal consistency failure
Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C
Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC
Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0
 .
 .
 .

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset 00000318. If you have a
bugcheck dump with an exception at COSI_CHF_SIGNAL, it is important to note the next "Saved PC"
because it is needed when working with Oracle Rdb Worldwide Support.

11.1.12 Read−only Transactions Fetch AIP Pages Too Often

Oracle Rdb read−only transactions fetch Area Inventory Pages (AIP) to ensure that the logical area has not
been modified by an exclusive read−write transaction. This check is needed because an exclusive read−write
transaction does not write snapshot pages and these pages may be needed by the read−only transaction.

Because AIPs are always stored in the RDB$SYSTEM area, reading the AIP pages could represent a
significant amount of I/O to the RDB$SYSTEM area for some applications. Setting the RDB$SYSTEM area
to read−only can avoid this problem, but it also prevents other online operations that might be required by the
application so it is not a viable workaround in all cases.

Oracle® Rdb for OpenVMS

11.1.11 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL 419

This problem has been reduced in Oracle Rdb release 7.0. The AIP entries are now read once and then are not
read again unless they need to be. This optimization requires that the carry−over locks feature be enabled (this
is the default setting). If carry over locks are not enabled, this optimization is not enabled and the behavior is
the same as in previous releases.

11.1.13 Row Cache Not Allowed While Hot Standby Replication
is Active

The row cache feature may not be enabled on a hot standby database while replication is active. The hot
standby feature will not start if row cache is enabled.

This restriction exists because rows in the row cache are accessed via logical dbkeys. However, information
transferred to the standby database via the after image journal facility only contains physical dbkeys. Because
there is no way to maintain rows in the cache via the hot standby processing, the row cache must be disabled
when the standby database is open and replication is active.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU Open command. To
open the hot standby database prior to starting replication, use the ROW_CACHE=DISABLED qualifier on
the RMU Open command.

11.1.14 Excessive Process Page Faults and other Performance
Considerations During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process performance. One factor contributing
to Oracle Rdb process page faulting is sorting operations. Common causes of sorts include the SQL GROUP
BY, ORDER BY, UNION, and DISTINCT clauses specified for a query, and index creation operations.
Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle Rdb sort
operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb images and does not
generally call the routines in the OpenVMS run−time library. A copy of the SORT32 code is used to provide
stability between versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort routines from
executive processor mode which is difficult to do using the SORT32 shareable image. SQL IMPORT and
RMU Load operations do, however, call the OpenVMS SORT run−time library.

At the beginning of a sort operation, the SORT code allocates some memory for working space. The SORT
code uses this space for buffers, in−memory copies of the data, and sorting trees.

SORT does not directly consider the processes quotas or parameters when allocating memory. The effects of
WSQUOTA and WSEXTENT are indirect. At the beginning of each sort operation, the SORT code attempts
to adjust the process working set to the maximum possible size using the $ADJWSL system service
specifying a requested working set limit of %X7FFFFFFF pages (the maximum possible). SORT then uses a
value of 75% of the returned working set for virtual memory scratch space. The scratch space is then
initialized and the sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly added to the
working set. Pages that were in the working set already may be faulted out as the new pages are faulted in.
Once the sort operation completes and SORT returns back to Oracle Rdb, the pages that may have been
faulted out of the working set are likely to be faulted back into the working set.

Oracle® Rdb for OpenVMS

11.1.13 Row Cache Not Allowed While Hot Standby Replication is Active 420

When a process working set is limited by the working set quota (WSQUOTA) parameter and the working set
extent (WSEXTENT) parameter is a much larger value, the first call to the sort routines can cause many page
faults as the working set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help reduce
the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_MWSEXTENT equal to the
WSMAX parameter. This means that all processes on the system end up with WSEXTENT the same as
WSMAX. Since that might be quite high, sorting might result in excessive page faulting. You may want to
explicitly set PQL_MWSEXTENT to a lower value if this is the case on your system.

Sort work files are another factor to consider when tuning for Oracle Rdb sort operations. When the operation
can not be done in the available memory, SORT uses temporary disk files to hold the data as it is being sorted.
The Oracle Rdb7 Guide to Database Performance and Tuning contains more detailed information about sort
work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort is to use if work
files are required. The default is 2 and the maximum number is 10. The work files can be individually
controlled by the SORTWORKn logical names (where n is from 0 through 9). You can increase the efficiency
of sort operations by assigning the location of the temporary sort work files to different disks. These
assignments are made by using up to ten logical names, SORTWORK0 through SORTWORK9.

Normally, SORT places work files in the your SYS$SCRATCH directory. By default, SYS$SCRATCH is the
same device and directory as the SYS$LOGIN location. Spreading the I/O load over many disks improves
efficiency as well as performance by taking advantage of the system resources and helps prevent disk I/O
bottlenecks. Specifying that a your work files reside on separate disks permits overlap of the SORT read/write
cycle. You may also encounter cases where insufficient space exists on the SYS$SCRATCH disk device (for
example, while Oracle Rdb builds indexes for a very large table). Using the SORTWORK0 through
SORTWORK9 logical names can help you avoid this problem.

Note that SORT uses the work files for different sorted runs, and then merges the sorted runs into larger
groups. If the source data is mostly sorted, then not every sort work file may need to be accessed. This is a
possible source of confusion because even with 10 sort work files, it is possible to exceed the capacity of the
first SORT file and the sort operation fails never having accessed the remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE do not affect or
control the operation of sort. These logical names are used to control other temporary space allocation within
Oracle Rdb.

11.1.15 Control of Sort Work Memory Allocation

Oracle Rdb uses a built−in SORT32 package to perform many sort operations. Sometimes, these sorts exhibit
a significant performance problem when initializing work memory to be used for the sort. This behavior can
be experienced, for example, when a very large sort cardinality is estimated, but the actual sort cardinality is
small.

In rare cases, it may be desirable to artificially limit the sort package's use of work memory. Two logicals
have been created to allow this control. In general, there should be no need to use either of these logicals and
misuse of them can significantly impact sort performance. Oracle recommends that these logicals be used
carefully and sparingly.

Oracle® Rdb for OpenVMS

11.1.15 Control of Sort Work Memory Allocation 421

The logical names are:

Table 11−1 Sort Memory Logicals

Logical Definition

RDMS$BIND_SORT_MEMORY_WS_FACTOR

Specifies a percentage of the process's working
set limit to be used when allocating sort memory
for the built−in SORT32 package. If not defined,
the default value is 75 (representing 75%), the
maximum value is 75 (representing 75%), and the
minimum value is 2 (representing 2%). Processes
with vary large working set limits can sometimes
experience significant page faulting and CPU
consumption while initializing sort memory. This
logical name can restrict the sort work memory to
a percentage of the processes maximum working
set.

RDMS$BIND_SORT_MEMORY_MAX_BYTES

Specifies an absolute limit to be used when
allocating sort memory for the built−in SORT32
package. If not defined, the default value is
unlimited (up to 1GB), the maximum value is
2,147,483,647 and the minimum value is 32,768.

11.1.16 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate query can interfere
with the retrieval of the cursor by modifying the index columns key values used by the cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= 'M', it is likely that the query will
use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an update occurs during the
processing of the cursor which changes the LAST_NAME of an employee from "Mason" to "Rickard", then it
is possible that that employee row will be processed twice. First when it is fetched with name "Mason", and
then later when it is accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies which optimize the
I/O requirements, such as Index Retrieval, can be subject to this problem. Interference from queries by other
sessions are avoided by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For example, if the
SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates of target rows, or the
RDO/RDML MODIFY statement uses the context variable for the stream. Then the optimizer will choose an
alternate access strategy if an update can occur which may cause the Halloween problem. This can be seen in
the access strategy in Example 2−2 as a "Temporary relation" being created to hold the result of the cursor
query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or DELETE ... WHERE
CURRENT OF statements will not be seen until after the cursor is declared and opened. In these

Oracle® Rdb for OpenVMS

11.1.16 The Halloween Problem 422

environments, you must use the FOR UPDATE clause to specify that columns selected by the cursor will be
updated during cursor processing. This is an indication to the Rdb optimizer so that it protects against the
Halloween problem in this case. This is shown in Example 2−1 and Example 2−2.

The following example shows that the EMP_LAST_NAME index is used for retrieval. Any update performed
will possibly be subject to the Halloween problem.

SQL> set flags 'strategy';
SQL> declare emp cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp;

The following example shows that the query specifies that the column LAST_NAME will be updated by
some later query. Now the optimizer protects the EMP_LAST_NAME index used for retrieval by using a
"Temporary Relation" to hold the query result set. Any update performed on LAST_NAME will now avoid
the Halloween problem.

SQL> set flags 'strategy';
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name
cont> for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp2;

When you use the SQL precompiler, or the SQL module language compiler it can be determined from usage
that the cursor context will possibly be updated during the processing of the cursor because all cursor related
statements are present within the module. This is also true for the RDML/RDBPRE precompilers when you
use the DECLARE_STREAM and START_STREAM statements and use the same stream context to perform
all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or RDO stream),
not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor then the actual
rows fetched will depend upon the access strategy chosen by the Rdb optimizer. As the query is separate from
the cursors query (i.e. doesn't reference the cursor context), then the optimizer does not know that the cursor
selected rows are potentially updated and so cannot perform the normal protection against the Halloween
problem.

Oracle® Rdb for OpenVMS

11.1.16 The Halloween Problem 423

11.2 SQL Known Problems and Restrictions
This section describes known problems and restrictions for the SQL interface for release 7.1.

11.2.1 Unexpected CONVERT_ERROR Exception When
Querying Partitioned Index

Bug 2653096

In Oracle Rdb V7.0 releases, when the RDMS$INDEX_PART_CHECK logical name is defined to "1", or in
Rdb V7.1, it is possible to receive a CONVERT_ERROR when querying a partitioned index.

The following example shows the exception.

SQL> create index s1 on t1 (c1, c2)
cont> store
cont> using (c1)
cont> in i1 with limit of (date vms '01−jan−2001 00:00:00.00')
cont> in i2 with limit of (date vms '01−jan−2002 00:00:00.00')
cont> otherwise in i3;
cont> commit;
SQL>
SQL> select * from t1 where c1 > '17−jan−2000';
 C1 C2
 1−FEB−2000 00:00:00.00 d1
 1−JAN−2001 00:00:00.00 d2
 1−FEB−2001 00:00:00.00 d2
%RDB−E−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−F−INV_DATE_CHG, invalid field datatype change to/from datetime

This is a problem with an index partition scan optimization introduced as an optional feature in Oracle Rdb
V7.0 and is the default for Rdb V7.1 releases. Rdb uses the WITH LIMIT OF clause from the index storage
map to limit the partitions processed by range scans. This error occurs when building the partition upper range
when the index USING clause is based on DATE VMS data types.

In either release, the logical name RDMS$INDEX_PART_CHECK can be defined to the value "0" to disable
the optimization. When this optimization is disabled, some queries might process additional partitions before
terminating the query (usually when the partition holds no matching key values) or concurrent processes may
see lock contention on partitions which are expected to be used exclusively.

This problem will be corrected in a future release of Oracle Rdb.

11.2.2 Interchange File (RBR) Created by Oracle Rdb Release 7.1
Not Compatible With Previous Releases

To support the large number of new database attributes and objects, the protocol used by SQL EXPORT and
SQL IMPORT has been enhanced to support more protocol types. Therefore, this format of the Oracle Rdb
release 7.1 interchange files can no longer be read by older versions of Oracle Rdb.

Oracle Rdb continues to provide upward compatibility for interchange files generated by older versions.

11.2 SQL Known Problems and Restrictions 424

Oracle Rdb has never supported backward compatibility, however, it was sometimes possible to use an
interchange file with an older version of IMPORT. However, this protocol change will no longer permit this
usage.

11.2.3 Unexpected NO_META_UPDATE Error Generated by
DROP MODULE ... CASCADE When Attached by PATHNAME

The SQL DROP MODULE ... CASCADE statement may sometimes generate an unexpected
NO_META_UPDATE error. This occurs when the session attaches to a database by PATHNAME. For
example:

SQL> drop module m1 cascade;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
−RDMS−E−MODNOTDEL, module "M1" has not been deleted

This error occurs because the CASCADE option is ignored because the Oracle CDD/Repository does not
support CASCADE. The workaround is to attach by FILENAME and perform the metadata operation.

In a future release of Oracle Rdb, an informational message will be issued describing the downgrade from
CASCADE to RESTRICT in such cases.

11.2.4 Problem Exporting and Importing Sequences with
ANSI−Style Databases

Exporting and importing sequences defined in an ANSI−style databases may result in an error. An error will
occur if a sequence exists in the database with another object imported after the sequence. For example,
importing an ANSI−style database which has sequences and modules defined will return an error. For
example:

%SQL−F−BADCORATT, invalid core attribute 00, 14 in .RBR file

This problem will be fixed in a future release of Oracle Rdb.

11.2.5 System Relation Change for International Database Users

Due to an error in creating the RDB$FIELD_VERSIONS system relation, another system relation,
RDB$STORAGE_MAP_AREAS, cannot be accessed if the session character sets are not set to DEC_MCS.

This problem prevents the new Oracle Rdb GUIs, specifically the Oracle Rdb Schema Manager, from viewing
indexes and storage maps from existing Oracle Rdb databases.

The problem can be easily corrected by executing the following SQL statement after attaching to the database:

SQL> UPDATE RDB$FIELD_VERSIONS SET RDB$FIELD_SUB_TYPE = 32767
cont> WHERE RDB$FIELD_NAME = 'RDB$AREA_NAME';

Oracle® Rdb for OpenVMS

11.2.3 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME425

11.2.6 Single Statement CALL Does Not Support Truncated
Parameter List or DEFAULT Keyword

Oracle Rdb now allows the CALL statement in a compound statement to omit trailing IN mode parameters
which have had a DEFAULT value defined in the procedure definition. Also supported is the DEFAULT
keyword to replace an explicit value for the parameter.

However, the simple CALL statement (used outside a BEGIN END block) is not adaptable in this way and
requires a full set of parameters and values. This is because a parameter signature is calculated for this type of
CALL statement so that the parameter block passed by the calling routine and used by the called routine
match exactly in parameter count and data types.

This is a permanent restriction for the simple CALL statement.

The following example shows that truncated parameter lists are fully supported by the compound use form of
the CALL statement, but not by the simple CALL statement.

SQL> ATTACH 'FILENAME db$:scratch';
SQL> CREATE MODULE mmm
cont> PROCEDURE mmm_p (IN :a INTEGER DEFAULT 0, IN :b INTEGER DEFAULT 1);
cont> TRACE :a, :b;
cont> END MODULE;
SQL> SET FLAGS 'Trace';
SQL> CALL mmm_p (10,20);
~Xt: 10 20
SQL> CALL mmm_p (10);
%SQL−F−ARGCOUNT, Procedure MMM_P expected 2 parameters, was passed 1
SQL> call MMM_P ();
%SQL−F−ARGCOUNT, Procedure MMM_P expected 2 parameters, was passed 0
SQL> begin
cont> CALL mmm_p (10,20);
cont> CALL mmm_p (10);
cont> call mmm_p ();
cont> END;
~Xt: 10 20
~Xt: 10 1
~Xt: 0 1

For maximum flexibility, use the CALL statement inside a compound statement which supports truncated
parameter lists, the DEFAULT keyword, and full value expressions for parameter arguments.

11.2.7 Single Statement LOCK TABLE is Not Supported for SQL
Module Language and SQL Precompiler

The new LOCK TABLE statement is not currently supported as a single statement within the module
language or embedded SQL language compiler.

Instead you must enclose the statement in a compound statement. That is, use BEGIN... END around the
statement as shown in the following example. This format provides all the syntax and flexibility of LOCK
TABLE.

This restriction does not apply to interactive or dynamic SQL.

Oracle® Rdb for OpenVMS

11.2.6 Single Statement CALL Does Not Support Truncated Parameter List or DEFAULT Keyword426

The following extract from the module language listing file shows the reported error if you use LOCK
TABLE as a single statement procedure. The other procedure in the same module is acceptable because it uses
a compound statement that contains the LOCK TABLE statement.

1 MODULE sample_test
2 LANGUAGE C
3 PARAMETER COLONS
4
5 DECLARE ALIAS FILENAME 'mf_personnel'
6
7 PROCEDURE a (SQLCODE);
8 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
%SQL−F−WISH_LIST, (1) Feature not yet implemented − LOCK TABLE requires compound
statement
9
10 PROCEDURE b (SQLCODE);
11 BEGIN
12 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
13 END;

To workaround this problem of using LOCK TABLE for SQL module language or embedded SQL
application, use a compound statement in an EXEC SQL statement.

11.2.8 Restriction for CREATE STORAGE MAP Statement on
Table with Data

Oracle Rdb V7.0 added support that allows a storage map to be added to an existing table that contains data.
The Oracle Rdb7 Guide to Database Design and Definition describes this feature and lists restrictions.

Oracle Rdb release 7.1 adds the restriction that the storage map cannot include a WITH LIMIT clause for the
storage area. The following example shows the resulting error:

SQL> create table MAP_TEST1 (a integer, b char(10));
SQL> create index MAP_TEST1_INDEX on MAP_TEST1 (a);
SQL> insert into MAP_TEST1 (a, b) values (3, 'Third');
1 row inserted
SQL> create storage map MAP_TEST1_MAP for MAP_TEST1
cont> store using (a) in RDB$SYSTEM
cont> with limit of (10); −− cannot use WITH LIMIT clause
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−RELNOTEMPTY, table "MAP_TEST1" has data in it
−RDMS−E−NOCMPLXMAP, can not use complex map for non−empty table

11.2.9 Multistatement or Stored Procedures May Cause Hangs

Long−running multistatement or stored procedures can cause other users in the database to hang if the
procedures obtain resources needed by those other users. Some resources obtained by the execution of a
multistatement or stored procedure are not released until the multistatement or stored procedure finishes.
Thus, any−long running multistatement or stored procedure can cause other processes to hang. This problem
can be encountered even if the statement contains SQL COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop; the second session
attempts to backup the database but hangs forever.

Oracle® Rdb for OpenVMS

11.2.8 Restriction for CREATE STORAGE MAP Statement on Table with Data 427

Session 1:

SQL> attach 'filename MF_PERSONNEL';
SQL> create function LIB$WAIT (in real by reference)
cont> returns integer;
cont> external name LIB$WAIT location 'SYS$SHARE:LIBRTL.EXE'
cont> language general general parameter style variant;
SQL> commit;
 .
 .
 .
$ SQL
SQL> attach 'filename MF_PERSONNEL';
SQL> begin
cont> declare :LAST_NAME LAST_NAME_DOM;
cont> declare :WAIT_STATUS integer;
cont> loop
cont> select LAST_NAME into :LAST_NAME
cont> from EMPLOYEES where EMPLOYEE_ID = '00164';
cont> rollback;
cont> set :WAIT_STATUS = LIBWAIT (5.0);
cont> set transaction read only;
cont> end loop;
cont> end;

Session 2:

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session, you can see that the backup process is waiting
for a lock held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
 .
 .
 .
Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−− −−−−−−−−− −−−−−−−
20204383 RMU BACKUP..... 5600A476 00010001 CW NL
2020437B SQL............ 3B00A35C 00010001 PR PR

There is no workaround for this restriction. When the multistatement or stored procedure finishes execution,
the resources needed by other processes are released.

11.2.10 Use of Oracle Rdb from Shareable Images

If code in the image initialization routine of a shareable image makes any calls into Oracle Rdb, through SQL
or any other means, access violations or other unexpected behavior may occur if Oracle Rdb images have not
had a chance to do their own initialization.

To avoid this problem, applications must take one of the following steps:

Do not make Oracle Rdb calls from the initialization routines of shareable images.•
Link in such a way that the RDBSHR.EXE image initializes first. You can do this by placing the
reference to RDBSHR.EXE and any other Oracle Rdb shareable images last in the linker options file.

•

Oracle® Rdb for OpenVMS

11.2.10 Use of Oracle Rdb from Shareable Images 428

This is not a bug; it is a restriction resulting from the way OpenVMS image activation works.

Oracle® Rdb for OpenVMS

11.2.10 Use of Oracle Rdb from Shareable Images 429

11.3 Oracle RMU Known Problems and Restrictions
This section describes known problems and restrictions for the RMU interface for release 7.1.

11.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been Disabled

The MAX_FILE_SIZE option of the RMU/BACKUP/DISK_FILE qualifier for backup to multiple disk files
has been temporarily disabled since it creates corrupt RBF files if the maximum file size in megabytes is
exceeded and a new RBF file is created. It also does not give a unique name to the new RBF file but creates
an RBF file with the same name but a new version number in the same disk directory. This will cause an
RMU−F−BACFILCOR error on the restore and the restore will not complete.

The multi−file disk backup and restore will succeed if this option is not used. If this option is specified, a
warning message is now output that this qualifier will be ignored.

The following example shows that the MAX_FILE_SIZE option, when used with the /DISK_FILE qualifier
on an RMU/BACKUP, will be ignored and a warning message will be output.

$ RMU/BACKUP /ONLINE −
 /NOCRC −
 /NOLOG −
 /NOINCREMENTAL −
 /QUIET_POINT −
 TEST_DB_DIR:TEST_DB
 −
BACKUP_DIR_1:TEST_DB/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) ,−
BACKUP_DIR_2:/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) ,−
BACKUP_DIR_3:/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10)

%RMU−W−DISABLEDOPTION, The MAX_FILE_SIZE option is temporarily disabled
 and will be ignored

As a workaround to avoid this problem, do not specify the MAX_FILE_SIZE option with the /DISK_FILE
qualifier.

11.3.2 RMU Convert Fails When Maximum Relation ID is
Exceeded

If, when relation IDs are assigned to new system tables during an RMU Convert of an Oracle Rdb V7.0
database to a V7.1 database, the maximum relation ID of 8192 allowed by Oracle Rdb is exceeded, the fatal
error %RMU−F−RELMAXIDBAD is displayed and the database is rolled back to V70. Contact your Oracle
support representative if you get this error. Note that when the database is rolled back, the fatal error
%RMU−F−CVTROLSUC is displayed to indicate that the rollback was successful but caused by the detection
of a fatal error and not requested by the user.

This condition only occurs if there are an extremely large number of tables defined in the database or if a large
number of tables were defined but have subsequently been deleted.

The following example shows both the %RMU−F−RELMAXIDBAD error message if the allowed database
relation ID maximum of 8192 is exceeded and the %RMU−F−CVTROLSUC error message when the
database has been rolled back to V7.0 since it cannot be converted to V7.1:

11.3 Oracle RMU Known Problems and Restrictions 430

$rmu/convert mf_personnel
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.1−00
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
 %RMU−I−LOGCONVRT, database root converted to current structure level
 %RMU−F−RELMAXIDBAD, ROLLING BACK CONVERSION − Relation ID exceeds maximum
 8192 for system table RDB$RELATIONS
 %RMU−F−CVTROLSUC, CONVERT rolled−back for
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.0

The following example shows the normal case when the maximum allowed relation ID is not exceeded:

$rmu/convert mf_personnel
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.1−00
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
 successfully converted from version V7.0 to V7.1
%RMU−I−CVTCOMSUC, CONVERT committed for
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.1

11.3.3 RMU Unload /After_Journal Requires Accurate AIP
Logical Area Information

The RMU Unload /After_Journal command uses the on−disk area inventory pages (AIPs) to determine the
appropriate type of each logical area when reconstructing logical dbkeys for records stored in mixed−format
storage areas. However, the logical area type information in the AIP is generally unknown for logical areas
created prior to Oracle Rdb release 7.0.1. If the RMU Unload /After_Journal command cannot determine the
logical area type for one or more AIP entries, a warning message is displayed for each such area and may
ultimately return logical dbkeys with a 0 (zero) area number for records stored in mixed−format storage areas.

In order to update the on−disk logical area type in the AIP, the RMU Repair utility must be used. The
INITIALIZE=LAREA_PARAMETERS=optionfile qualifier option file can be used with the TYPE qualifier.
For example, to repair the EMPLOYEES table of the MF_PERSONNEL database, you would create an
options file that contains the following line:

EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the AREA=name qualifier can be used to identify the specific storage areas that
are to be updated. For example, to repair the EMPLOYEES table of the MF_PERSONNEL database for the
EMPID_OVER storage area only, you would create an options file that contains the following line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The TYPE qualifier specifies the type of a logical area. The following keywords are allowed:

TABLE
Specifies that the logical area is a data table. This would be a table created using the SQL CREATE
TABLE syntax.

•

Oracle® Rdb for OpenVMS

11.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information 431

B−TREE
Specifies that the logical area is a B−tree index. This would be an index created using the SQL
CREATE INDEX TYPE IS SORTED syntax.

•

HASH
Specifies that the logical area is a hash index. This would be an index created using the SQL
CREATE INDEX TYPE IS HASHED syntax.

•

SYSTEM
Specifies that the logical area is a system record that is used to identify hash buckets. Users cannot
explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas. This type does
NOT identify system relations.

•

BLOB
Specifies that the logical area is a BLOB repository.

•

There is no explicit error checking of the type specified for a logical area. However, an incorrect type may
cause the RMU Unload /After_Journal command to be unable to correctly return valid, logical dbkeys.

11.3.4 Do Not Use HYPERSORT with RMU Optimize
After_Journal Command

The OpenVMS Alpha V7.1 operating system introduced the high−performance Sort/Merge utility (also
known as HYPERSORT). This utility takes advantage of the OpenVMS Alpha architecture to provide better
performance for most sort and merge operations.

The high−performance Sort/Merge utility supports a subset of the SOR routines. Unfortunately, the
high−performance Sort/Merge utility does not support several of the interfaces used by the RMU Optimize
After_Journal command. In addition, the high−performance Sort/Merge utility reports no error or warning
when being called with the unsupported options used by the RMU Optimize After_Journal command.

Because of this, the use of the high−performance Sort/Merge utility is not supported for the RMU Optimize
After_Journal command. Do not define the logical name SORTSHR to reference HYPERSORT.EXE.

11.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU
Backup

The RMU Backup command no longer accepts both the Include and Exclude qualifiers in the same command.
This change removes the confusion over exactly what gets backed up when Include and Exclude are specified
on the same line, but does not diminish the capabilities of the RMU Backup command.

To explicitly exclude some storage areas from a backup, use the Exclude qualifier to name the storage areas to
be excluded. This causes all storage areas to be backed up except for those named by the Exclude qualifier.

Similarly, the Include qualifier causes only those storage areas named by the qualifier to be backed up. Any
storage area not named by the Include qualifier is not backed up. The Noread_only and Noworm qualifiers
continue to cause read−only storage areas and WORM storage areas to be omitted from the backup even if

Oracle® Rdb for OpenVMS

11.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal Command 432

these areas are explicitly listed by the Include qualifier.

Another related change is in the behavior of EXCLUDE=*. In previous versions, EXCLUDE=* caused all
storage areas to be backed up. Beginning with V7.1, EXCLUDE=* causes only a root backup to be done. A
backup created by using EXCLUDE=* can be used only by the RMU Restore Only_Root command.

11.3.6 Default for RMU CRC Qualifier Changing in Future
Release

The default behavior for the Crc qualifier for the following RMU commands is changing in a future release of
Oracle Rdb:

Backup•
Backup After_Journal•
Backup Plan•
Optimize After_Journal•

Currently, the default value for the CRC qualifier is:

Crc=Autodin_II is the default for NRZ/PE (800/1600 bits/inch) tape drives•
Crc=Checksum is the default for GCR (6250 bits/inch) tape drives and for TA78, TA79, and TA81
tape drives

•

Nocrc is the default for TA90 (IBM 3480 class) drives•

In a future release, the default value for the CRC qualifier will be Crc=Checksum for all tape drives except
NRZ/PE (800/1600 bits/inch) tape drives. The default qualifier for the NRZ/PE (800/1600 bits/inch) tape
drives will remain Crc=Autodin_II. The Crc=Checksum qualifier verifies the checksum on each buffer of data
before it is written to tape or disk. This provides end−to−end error detection for the backup file I/O.

Oracle Corporation recommends that you accept the new behavior, that will be the default in a future release
of Oracle Rdb, for your applications. The default behavior prevents you from including corrupt database
pages in backup files and optimized .aij files. Without the checksum verifications, corrupt data pages in these
files are not detected when the files are restored. The corruptions on the restored page may not be detected
until weeks or months after the backup file is created, or it is possible the corruption may not be detected at
all.

11.3.7 RMU Backup Operations Should Use Only One Type of
Tape Drive

When using more than one tape drive for an RMU Backup command, all of the tape drives must be of the
same type (for example, all the tape drives must be TA90s or TZ87s or TK50s). Using different tape drive
types (for example, one TK50 and one TA90) for a single database backup operation may make database
restoration difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a backup operation, but is not able
to detect all invalid cases and expects that all tape drives for a backup are of the same type.

As long as all of the tapes used during a backup operation can be read by the same type of tape drive during a
restore operation, the backup is likely valid. This may be the case, for example, when using a TA90 and a

Oracle® Rdb for OpenVMS

11.3.6 Default for RMU CRC Qualifier Changing in Future Release 433

TA90E.

Oracle Corporation recommends that, on a regular basis, you test your backup and recovery procedures and
environment using a test system. You should restore the database and then recover using AIJs to simulate
failure recovery of the production system.

Consult the Oracle Rdb7 Guide to Database Maintenance, the Oracle Rdb7 Guide to Database Design and
Definition, and the Oracle RMU Reference Manual for additional information about Oracle Rdb backup and
restore operations.

11.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST
Errors

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying storage areas.
These errors indicate that the Space Area Management (SPAM) page fullness threshold for a particular data
page does not match the actual space usage on the data page. For a further discussion of SPAM pages, consult
the Oracle Rdb7 Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database. There is potential
for space on the data page to not be totally utilized, or for a small amount of extra I/O to be expended when
searching for space in which to store new rows. But unless there are many of these errors then the impact
should be negligible.

It is possible for these inconsistencies to be introduced by errors in Oracle Rdb. When those cases are
discovered, Oracle Rdb is corrected to prevent the introduction of the inconsistencies. It is also possible for
these errors to be introduced during the normal operation of Oracle Rdb. The following scenario can leave the
SPAM pages inconsistent:

A process inserts a row on a page, and updates the threshold entry on the corresponding SPAM page
to reflect the new space utilization of the data page. The data page and SPAM pages are not flushed to
disk.

1.

Another process notifies the first process that it would like to access the SPAM page being held by the
process. The first process flushes the SPAM page changes to disk and releases the page. Note that it
has not flushed the data page.

2.

The first process then terminates abnormally (for example, from the DCL STOP/IDENTIFICATION
command). Since that process never flushed the data page to disk, it never wrote the changes to the
Recovery Unit Journal (RUJ) file. Since there were no changes in the RUJ file for that data page then
the Database Recovery (DBR) process did not need to roll back any changes to the page. The SPAM
page retains the threshold update change made above even though the data page was never flushed to
disk.

3.

While it would be possible to create mechanisms to ensure that SPAM pages do not become out of synch with
their corresponding data pages, the performance impact would not be trivial. Since these errors are relatively
rare and the impact is not significant, then the introduction of these errors is considered to be part of the
normal operation of Oracle Rdb. If it can be proven that the errors are not due to the scenario above, then
Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following operations:

Recreate the database by performing:•

Oracle® Rdb for OpenVMS

11.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 434

SQL EXPORT1.
SQL DROP DATABASE2.
SQL IMPORT3.

Recreate the database by performing:
RMU/BACKUP1.
SQL DROP DATABASE2.
RMU/RESTORE3.

•

Repair the SPAM pages by using the RMU/REPAIR command. Note that the RMU/REPAIR
command does not write its changes to an after−image journal (AIJ) file. Therefore, Oracle
recommends that a full database backup be performed immediately after using the RMU/REPAIR
command.

•

Oracle® Rdb for OpenVMS

11.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 435

11.4 Known Problems and Restrictions in All
Interfaces for Release 7.0 and Earlier
The following problems and restrictions from release 7.0 and earlier still exist.

11.4.1 Converting Single−File Databases

Because of a substantial increase in the database root file information for V7.0, you should ensure that
you have adequate disk space before you use the RMU Convert command with single−file databases
and V7.0 or higher.

The size of the database root file of any given database increases a minimum of 13 blocks and a
maximum of 597 blocks. The actual increase depends mostly on the maximum number of users
specified for the database.

11.4.2 Row Caches and Exclusive Access

If a table has a row−level cache defined for it, the Row Cache Server (RCS) may acquire a shared
lock on the table and prevent any other user from acquiring a Protective or Exclusive lock on that
table.

11.4.3 Exclusive Access Transactions May Deadlock with
RCS Process

If a table is frequently accessed by long running transactions that request READ/WRITE access
reserving the table for EXCLUSIVE WRITE and if the table has one or more indexes, you may
experience deadlocks between the user process and the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

Reserve the table for SHARED WRITE♦
Close the database and disable row cache for the duration of the exclusive transaction♦
Change the checkpoint interval for the RCS process to a time longer than the time required to
complete the batch job and then trigger a checkpoint just before the batch job starts. Set the
interval back to a smaller interval after the checkpoint completes.

♦

11.4.4 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator and a value that is
the same as the boundary value of a storage map, Oracle Rdb scans extra partitions. A boundary value
is a value specified in the WITH LIMIT OF clause. The following example, executed while the
logical name RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:

ATTACH 'FILENAME MF_PERSONNEL';
CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE
 STORE USING (ID)
 IN EMPIDS_LOW WITH LIMIT OF (200)

11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier 436

 IN EMPIDS_MID WITH LIMIT OF (400)
 OTHERWISE IN EMPIDS_OVER;
INSERT INTO T1 VALUES (150,'Boney','MaryJean');
INSERT INTO T1 VALUES (350,'Morley','Steven');
INSERT INTO T1 VALUES (300,'Martinez','Nancy');
INSERT INTO T1 VALUES (450,'Gentile','Russ');
SELECT * FROM T1 WHERE ID > 400;
Conjunct Get Retrieval sequentially of relation T1
Strict Partitioning: part 2 3
ID LAST_NAME FIRST_NAME
450 Gentile Russ
1 row selected

In the previous example, partition 2 does not need to be scanned. This does not affect the correctness
of the result. Users can avoid the extra scan by using values other than the boundary values.

11.4.5 Restriction When Adding Storage Areas with Users
Attached to Database

If you try to interactively add a new storage area where the page size is less than the existing page size
and the database has been manually opened or users are active, the add operation fails with the
following error:

%RDB−F−SYS_REQUEST, error from system services request
−RDMS−F−FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
−SYSTEM−W−ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and, if the database is set
to OPEN IS MANUAL, the database is closed. Several internal Oracle Rdb data structures are based
on the minimum page size and these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ, any recovery scenario fails.
Note also that if you use .aij files, you must backup the database and restart after−image journaling
because this change invalidates the current AIJ recovery.

11.4.6 Support for Single−File Databases to Be Dropped in
a Future Release

Oracle Rdb currently supports both single−file and multifile databases on all platforms. However,
single−file databases will not be supported in a future release of Oracle Rdb. At that time, Oracle Rdb
will provide the means to easily convert single−file databases to multifile databases.

Oracle Rdb recommends that users with single−file databases perform the following actions:

Use the Oracle RMU commands, such as Backup and Restore, to make copies, backup, or
move single−file databases. Do not use operating system commands to copy, back up, or
move databases.

♦

Create new databases as multifile databases even though single−file databases are supported.♦

Oracle® Rdb for OpenVMS

11.4.5 Restriction When Adding Storage Areas with Users Attached to Database 437

11.4.7 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk becomes
inconsistent, and is detected immediately during failover. (Failover is the recovery of an application
by restarting it on another computer.) The problem is rare, and occurs because only single−block I/O
operations are guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area−level restore operation. Database integrity is not compromised, but the
affected area is not available until the restore operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock atomic write
operations. Cluster failovers will automatically cause the recovery of multiblock pages, and no
manual intervention will be required.

11.4.8 Replication Option Copy Processes Do Not Process
Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data Distributor)
begins running after an application has begun modifying the database, the copy processes catch up to
the application and are not able to process database pages that are logically ahead of the application in
the RDB$CHANGES system relation. The copy processes all align waiting for the same database
page and do not move on until the application has released it. The performance of each copy process
degrades because it is being paced by the application.

When a copy process completes updates to its respective remote database, it updates the
RDB$TRANSFERS system relation and then tries to delete any RDB$CHANGES rows not needed
by any transfers. During this process, the RDB$CHANGES table cannot be updated by any
application process, holding up any database updates until the deletion process is complete. The
application stalls while waiting for the RDB$CHANGES table. The resulting contention for
RDB$CHANGES SPAM pages and data pages severely impacts performance throughput, requiring
user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as latches. These latches
are held only for the duration of an action on the page and not to the end of transaction. The page
locks also have blocking asynchronous system traps (ASTs) associated with them. Therefore,
whenever a process requests a page lock, the process holding that page lock is sent a blocking AST
(BLAST) by OpenVMS. The process that receives such a blocking AST queues the fact that the page
lock should be released as soon as possible. However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time. An Oracle Rdb verb is an
Oracle Rdb query that executes atomically, within a transaction. Therefore, verbs that require the scan
of a large table, for example, can be quite long. An updating application does not release page locks
until its verb has completed.

The reasons for holding on to the page locks until the end of the verb are fundamental to the database
management system.

Oracle® Rdb for OpenVMS

11.4.7 Multiblock Page Writes May Require Restore Operation 438

11.5 SQL Known Problems and Restrictions for
Oracle Rdb Release 7.0 and Earlier
The following problems and restrictions from Oracle Rdb Release 7.0 and earlier still exist.

11.5.1 SQL Does Not Display Storage Map Definition After
Cascading Delete of Storage Area

When you drop a storage area using the CASCADE keyword and that storage area is not the only area
to which the storage map refers, the SHOW STORAGE MAP statement no longer shows the
placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
 DEGREES_MAP1
 For Table: DEGREES1
 Compression is: ENABLED
 Partitioning is: NOT UPDATABLE
 Store clause: STORE USING (EMPLOYEE_ID)
 IN DEG_AREA WITH LIMIT OF ('00250')
 OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;
SQL> −− Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> −− Display the storage map definition.
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1 For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE

The other storage area, DEG_AREA2, still exists, even though the SHOW STORAGE MAP
statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map qualifier to see the
mapping.

11.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE
IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb V4.2 and V5.1, but run
under higher versions of Oracle Rdb, may result in incorrect results or %RDB−E−ARITH_EXCEPT
exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE or recompile and relink under a
higher version (V6.0 or higher.)

11.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier 439

11.5.3 Different Methods of Limiting Returned Rows from
Queries

You can establish the query governor for rows returned from a query by using either the SQL SET
QUERY LIMIT statement or a logical name. This note describes the differences between the two
mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name to a small value, the query often fails
with no rows returned regardless of the value assigned to the logical. The following example
demonstrates setting the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB−F−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process the SELECT
statement. In this example, interactive SQL loads its metadata cache to allow it to check that the
column EMPLOYEE_ID really exists for the table. The queries on the Oracle Rdb system relations
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the limit to a
number less than 100 (the cardinality of EMPLOYEES) but more than the number of columns in
EMPLOYEES (that is, the number of rows to read from the RDB$RELATION_FIELDS system
relation) is sufficient to read each column definition.

To see an indication of the queries executed against the system relations, define the
RDMS$DEBUG_FLAGS logical name as "S" or "B".

If you set the row limit using the SQL SET QUERY statement and run the same query, it returns the
number of rows specified by the SQL SET QUERY statement before failing:

 SQL> ATTACH 'FILENAME MF_PERSONNEL';
 SQL> SET QUERY LIMIT ROWS 10;
 SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
 EMPLOYEE_ID
 00164
 00165
 .
 .
 .
 00173
 %RDB−E−EXQUOTA, Oracle Rdb runtime quota exceeded
 −RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows. Therefore, the queries
used to load the metadata cache are not restricted in any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and module processor command line
qualifiers (QUERY_MAX_ROWS and SQLOPTIONS=QUERY_MAX_ROWS) only limit user
queries.

Oracle® Rdb for OpenVMS

11.5.3 Different Methods of Limiting Returned Rows from Queries 440

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other interfaces that
read the Oracle Rdb system relations as part of query processing.

11.5.4 Suggestions for Optimal Use of SHARED DATA
DEFINITION Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

Process the metadata.1.
Lock the index name.
Because new metadata (which includes the index name) is not written to disk until the end of
the index process, Oracle Rdb must ensure index name uniqueness across the database during
this time by taking a special lock on the provided index name.

2.

Read the table for sorting by selected index columns and ordering.3.
Sort the key data.4.
Build the index (includes partitioning across storage areas).5.
Write new metadata to disk.6.

Step 6 is the point of conflict with other index definers because the system relation and indexes are
locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING table_name FOR
SHARED DATA DEFINITION clause of the SET TRANSACTION statement. For optimal usage of
this capability, Oracle Rdb suggests the following guidelines:

You should commit the transaction immediately after the CREATE INDEX statement so that
locks on the table are released. This avoids lock conflicts with other index definers and
improves overall concurrency.

♦

By assigning the location of the temporary sort work files SORTWORK0, SORTWORK1, ...
, SORTWORK9 to different disks for each parallel process that issues the SHARED DATA
DEFINITION statement, you can increase the efficiency of sort operations. This minimizes
any possible disk I/O bottlenecks and allows overlap of the SORT read/write cycle.

♦

If possible, enable global buffers and specify a buffer number large enough to hold a
sufficient amount of table data. However, do not define global buffers larger than the
available system physical memory. Global buffers allow sharing of database pages and thus
result in disk I/O savings. That is, pages are read from disk by one of the processes and then
shared by the other index definers for the same table, reducing the I/O load on the table.

♦

If global buffers are not used, ensure that enough local buffers exist to keep much of the index
cached (use the RDM$BIND_BUFFERS logical name or the NUMBER OF BUFFERS IS
clause in SQL to change the number of buffers).

♦

To distribute the disk I/O load, store the storage areas for the indexes on separate disk drives.
Note that using the same storage area for multiple indexes results in contention during the
index creation (Step 5) for SPAM pages.

♦

Consider placing the .ruj file for each parallel definer on its own disk or an infrequently used
disk.

♦

Even though snapshot I/O should be minimal, consider disabling snapshots during parallel
index creation.

♦

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to determine the
appropriate working set values for each process to minimize excessive paging activity. In

♦

Oracle® Rdb for OpenVMS

11.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation441

particular, avoid using working set parameters where the difference between WSQUOTA and
WSEXTENT is large. The SORT utility uses the difference between these two values to
allocate scratch virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page faulting.
The performance benefits of using SHARED DATA DEFINITION can best be observed
when creating many indexes in parallel. The benefit is in the average elapsed time, not in
CPU or I/O usage. For example, when two indexes are created in parallel using the SHARED
DATA DEFINITION clause, the database must be attached twice, and the two attaches each
use separate system resources.

♦

Using the SHARED DATA DEFINITION clause on a single−file database or for indexes
defined in the RDB$SYSTEM storage area is not recommended.

♦

The following table displays the elapsed time benefit when creating multiple indexes in parallel with
the SHARED DATA DEFINITION clause. The table shows the elapsed time for ten parallel process
index creations (Index1, Index2, ... Index10) and one process with ten sequential index creations
(All10). In this example, global buffers are enabled and the number of buffers is 500. The longest
time for a parallel index creation is Index7 with an elapsed time of 00:02:34.64, compared to creating
ten indexes sequentially with an elapsed time of 00:03:26.66. The longest single parallel create index
elapsed time is shorter than the elapsed time of creating all ten of the indexes serially.

Table 11−2 Elapsed Time for Index Creations

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All10 00:03:26.66

11.5.5 Side Effect When Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate argument values by a
stored function. For example, if the routine being called is also called by a stored function during the
calculation of an argument value, passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the calculation of the
arguments for another invocation of the stored procedure P:

SQL> create module M
cont> language SQL
cont>

Oracle® Rdb for OpenVMS

11.5.5 Side Effect When Calling Stored Routines 442

cont> procedure P (in :a integer, in :b integer, out :c integer);
cont> begin
cont> set :c = :a + :b;
cont> end;
cont>
cont> function F () returns integer
cont> comment is 'expect F to always return 2';
cont> begin
cont> declare :b integer;
cont> call P (1, 1, :b);
cont> trace 'returning ', :b;
cont> return :b;
cont> end;
cont> end module;
SQL>
SQL> set flags 'TRACE';
SQL> begin
cont> declare :cc integer;
cont> call P (2, F(), :cc);
cont> trace 'Expected 4, got ', :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written to the called routine's
parameter area before complex expression values are calculated. These calculations may (as in the
example) overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the stored function F) to
a temporary variable and pass this variable as the input for the routine. The following example shows
the workaround:

SQL> begin
cont> declare :bb, :cc integer;
cont> set :bb = F();
cont> call P (2, :bb, :cc);
cont> trace 'Expected 4, got ', :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

11.5.6 Considerations When Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or ROLLBACK statement is
executed, the result set selected by the cursor may not remain stable. That is, rows may be inserted,
updated, and deleted by other users because no locks are held on the rows selected by the holdable
cursor after a commit or rollback occurs. Moreover, depending on the access strategy, rows not yet
fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a concurrent user
environment:

If the access strategy forces Oracle Rdb to take a data snapshot, the data read and cached may♦

Oracle® Rdb for OpenVMS

11.5.6 Considerations When Using Holdable Cursors 443

be stale by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2 deletes rows read by
user 1 (this is possible because the read locks are released). It is possible for user 1 to report
data now deleted and committed.
If the access strategy uses indexes that allow duplicates, updates to the duplicates chain may
cause rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the data that was
fetched. However, the duplicates chain could be revised by the time Oracle Rdb returns to
using it.

♦

Holdable cursors are a very powerful feature for read−only or predominantly read−only
environments. However, in concurrent update environments, the instability of the cursor may not be
acceptable. The stability of holdable cursors for update environments will be addressed in future
versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP to the value 1 to force all
hold cursors to fetch the result set into a cached data area. (The cached data area appears as a
"Temporary Relation" in the optimizer strategy displayed by the SET FLAGS 'STRATEGY'
statement or the RDMS$DEBUG_FLAGS "S" flag.) This logical name helps to stabilize the cursor to
some degree.

| Contents

Oracle® Rdb for OpenVMS

11.5.6 Considerations When Using Holdable Cursors 444

	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	April 2003
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.1.1
	1.1 Alpha EV7 Processor Support Added
	1.2 Oracle Rdb V7.1 Version Numbering Enhancement
	1.3 Requirements
	1.4 Invoking VMSINSTAL
	1.5 Stopping the Installation
	1.6 After Installing Oracle Rdb
	1.7 Oracle Rdb Release 7.1.1.0.1 Optimized for Alpha EV56 (21164A Processor Chip) and Later Platforms
	1.8 Maximum OpenVMS Version Check Added
	1.9 VMS$MEM_RESIDENT_USER Rights Identifier Required
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.1.1
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 DBR Process Bugchecks In DBR$DO_C_AIJBUF During Node-failure Recovery
	2.1.2 2PC Transaction Rolled Back If Transaction Manager Unavailable
	2.1.3 New After Image Journal Format
	2.1.4 Sequence Numbers Repeat
	2.1.5 Recovered Database May Not Have Correct Sequences
	2.1.6 Bugcheck When Reserving Sequence Slots at RUJ$JOURNAL + 028C
	2.1.7 Left Outer Query With OR Predicate Returns Wrong Result
	2.1.8 Left Outer Query With OR Predicate Returns Wrong Result
	2.1.9 GROUP BY Query With Match Strategy Returns Wrong Result
	2.1.10 Query Bugchecks When IN Clause Contains More Than 2 Dbkeys
	2.1.11 Left OJ Query Applying ZigZag Match Strategy Bugchecks
	2.1.12 Unexpected Privileges Required Using VLM or SSB Features with OpenVMS Galaxy Support Enabled
	2.1.13 Processes Loop at IPL2 When VLM or SSB Features Used
	2.1.14 Memory Leak With Preattached SQL/Services Service and Persona Enabled
	2.1.15 Persona Rights Not Honored With Non-privileged SQL/Services Service

	2.2 SQL Errors Fixed
	2.2.1 Simple CASE and DECODE Not Processed Correctly In Dynamic SQL
	2.2.2 PARTITION Clause Of SET TRANSACTION ... RESERVING Ignored
	2.2.3 Unexpected BAD_SYM Error When Recreating Table With IDENTITY Column

	2.3 Oracle RMU Errors Fixed
	2.3.1 Data Corruption In V7.0 After RMU/CONVERT/ROLLBACK If Rows Updated in V7.1
	2.3.2 RMU /UNLOAD /AFTER_JOURNAL Indicated Record Length Incorrect
	2.3.3 RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS Leaves AIJ Open
	2.3.4 Some RMU Parallel Backup Parameters Were Incorrectly Set
	2.3.5 RMU Parallel Backup New Style Tape Density Not Set Correctly
	2.3.6 RMU Parallel Backup Sometimes Did Not Update the Database Root
	2.3.7 RMU/BACKUP/AFTER_JOURNAL to Tape Could Sometimes Hang
	2.3.8 RMU Load Support For Interchange (RBR) Files From SQL EXPORT
	2.3.9 Various RMU Commands Return File Access Conflict Errors

	Chapter 3Software Errors Fixed in Oracle Rdb Release 7.1.0.5
	3.1 Software Errors Fixed That Apply to All Interfaces
	3.1.1 Oracle Rdb Optimized for Alpha EV56 (21164A Processor Chip) and Later Platforms

	Chapter 4Software Errors Fixed in Oracle Rdb Release 7.1.0.4
	4.1 Software Errors Fixed That Apply to All Interfaces
	4.1.1 Deadlocks From SET TRANSACTION RESERVING When Fast Commit Enabled
	4.1.2 Bugcheck at RDMS$$ALPHA$CONVERT_SORT+00000778
	4.1.3 RDMS$CREATE_LAREA_NOLOGGING Partly Ignored for Objects with Row Caches
	4.1.4 Exception in RDMS$$KOD_ISCAN_GET_NEXT
	4.1.5 Records Incorrectly Applied to a Key Entry in Sorted Ranked Index
	4.1.6 LRS Uses Too Much CPU in 7.1.0.1, 7.1.0.2, and 7.1.0.3
	4.1.7 Persona Nopriv Error Using SQLplus and Other OCI Clients
	4.1.8 Query With OR and Repeated AND Predicates Looped Forever
	4.1.9 %SYSTEM-F-ILLEGAL_SHADOW, Illegal Formed Trap Shadow Error
	4.1.10 AIJBL_START_FLG Not Always Set Correctly in AIJ
	4.1.11 Left Outer Join Query With UNION Legs Returns Wrong Results
	4.1.12 Query With EXISTS Clause Using Hashed Index Returns Wrong Results
	4.1.13 Performance of Self-Referencing Foreign Key Constraints
	4.1.14 Online Change of Storage Area Access Mode Now Allowed
	4.1.15 RCS Exits with COSI-F-SUBLOCKS
	4.1.16 TRUNCATE TABLE Results in RMU-E-BADABMPAG & RMU-W-ABMBITERR Messages from RMU /VERIFY
	4.1.17 Execution Trace For Dynamic Estimation Inaccurate
	4.1.18 Dynamic Optimizer Index Estimation May Be Wrong
	4.1.19 DBR Does Not Write Valid TSN for Commit of 2PC Transaction
	4.1.20 Various Problems With Dynamic Estimation of Ranked Indices
	4.1.21 Count Scan Optimization Returns Wrong Results
	4.1.22 Insert Statement Fails With Constraint Violation
	4.1.23 Followup on Bug 2529598 From Oracle Rdb Release 7.0.6.5
	4.1.24 Ranked Index Node Corruption After Insert of Duplicate Record
	4.1.25 Unexpected Bugcheck When Using RDMS$SET_FLAGS Logical
	4.1.26 NOT NULL Test in OJ Query With UNION Legs Returns Wrong Results
	4.1.27 Bugchecks at PSII2SCANRESETSCAN
	4.1.28 Stack Overflow Exception Replaced by %RDMS-E-NOSOL_FOUND Signal
	4.1.29 Another OR With Constant Predicate Returns Wrong Results
	4.1.30 Ranked Index Node Corruption After Deletion of Duplicate Record

	4.2 SQL Errors Fixed
	4.2.1 Incorrect Handling of FOR Loop Select List Columns
	4.2.2 Unexpected Error on FOR Loop With Dialect ORACLE LEVEL1
	4.2.3 Unexpected Truncation of Data Assigned in Precompiled SQL
	4.2.4 CREATE SEQUENCE Not Defaulting to WAIT
	4.2.5 Input Line Limit Too Low
	4.2.6 CASE Expression Causes SQL Bugcheck @SQL$$BLR_MSG_FIELD_REF + 1E8
	4.2.7 %SQL-F-INVFUNREF on Subquery of SELECT with GROUP BY
	4.2.8 Bugcheck on DDL Command With a Host Variable
	4.2.9 VALUE Keyword Not Recognized in DDL Statement
	4.2.10 ALTER TABLE May Result in a Bugcheck at RDMS$$COMPILE_RTN_EXPR
	4.2.11 DROP VIEW Corrupts Base Table AUTOMATIC Columns
	4.2.12 RDB-E-BAD_REQ_HANDLE in Stored Function
	4.2.13 Unexpected SEQNONEXT Error When Using Sequences
	4.2.14 Sequence Does Not Increase When Used in SELECT ... INTO
	4.2.15 AUTOMATIC Columns Can Now Reference Other Columns
	4.2.16 SET NO EXECUTE Permits More SHOW and SET Statements
	4.2.17 CAST Function Enhanced for Single Field INTERVAL Types
	4.2.18 Unexpected INVALID_BLR Error During CREATE MODULE
	4.2.19 Unexpected DEFVALINC Error When Using ALTER DOMAIN
	4.2.20 Unexpected UNRES_REL Error When DEFAULT Value References Table
	4.2.21 Restricted Range Index Not Detecting Out-of-Range Values
	4.2.22 Unexpected NODBKDRVTBL Error When Fetching DBKEY From a Table
	4.2.23 Function Reference Causes Exception
	4.2.24 SQL Precompiler Bugchecks on ALTER
	4.2.25 Bugcheck at RDMS$$COMPILE_FOR_IF for Aggregate Queries
	4.2.26 Unexpected INVALID_BLR When Using Variable CHECK Clause
	4.2.27 Unexpected OBSOLETE_METADA When Accessing Older Rdb Version
	4.2.28 IMPORT Did Not Create Objects with Function References
	4.2.29 Unexpected Table References From FOR Cursor Query
	4.2.30 Additional Warnings Generated for ALTER INDEX
	4.2.31 ALTER INDEX Would Report Unexpected OBSOLETE_METADA Error
	4.2.32 SELECT DISTINCT Returns Incorrect Value for NEXTVAL
	4.2.33 Unexpected Trailing Character in SMALLINT Display
	4.2.34 DEFAULT Value With Subselect Not Evaluated Correctly
	4.2.35 DROP SEQUENCE Bugchecks in Routine AIJ$JOURNAL
	4.2.36 DECLARE TRANSACTION Causes Memory Leak
	4.2.37 Restrictions Lifted for DROP and ALTER TABLE for Temporary Tables
	4.2.38 Object Dependencies Not Tracked for Domains or Complex DEFAULT Clauses
	4.2.39 SET LINE LENGTH Changed Upper Limit
	4.2.40 DROP SEQUENCE Not Synchronized With Other Sessions
	4.2.41 Compiled Applications May Fail With SQLCODE -304

	4.3 RDO and RDML Errors Fixed
	4.3.1 RDO SHOW FIELD Would Bugcheck on SQL Created Definition
	4.3.2 RDML/PASCAL Shareable Link/DEBUG SHRSYMFND Error

	4.4 Oracle RMU Errors Fixed
	4.4.1 RMU/CONVERT Writes Incorrect Metadata
	4.4.2 RMU/BACKUP to Tape Can Hang on a Quit Response to a Prompt
	4.4.3 RMU/BACKUP to Tape Can Hang When Terminating on Fatal Errors
	4.4.4 Unexpected COSI-F-TRU Error From RMU/EXTRACT
	4.4.5 RMU/LOAD Returned Error When Interchange File Contained No Rows
	4.4.6 RMU/RECOVER Exit Status Does Not Indicate That a Recovery Failed
	4.4.7 New Multithreaded Backup to Disk, Size Algorithm
	4.4.8 Bugcheck at AIJUTL$FORMAT_ARBS When Performing RMU/BACKUP/AFTER
	4.4.9 Thread Assignment and Storage Area Statistics Messages Were Not Being Displayed With RMU/BACKUP/LOG
	4.4.10 Cannot Resolve 2PC Transaction After RMU/RECOVER
	4.4.11 RMU/RESTORE /CDD Failed to Integrate Root File into CDD
	4.4.12 RMU/BACKUP Verifies Area File Belongs to Root
	4.4.13 RMU Extract Not Processing DEFAULT Correctly
	4.4.14 Unexpected BLRINV Error When Using RMU/EXTRACT
	4.4.15 RMU/BACKUP/AFTER/NOQUIET Could Bugcheck
	4.4.16 RMU/RECOVER/AREA Increments the Active AIJ Sequence Number
	4.4.17 RMU/LOAD/FIELDS With Empty Options File
	4.4.18 BTRLEACAR Warning Raised by RMU/VERIFY/INDEX
	4.4.19 RMU UNLOAD Incorrectly Using DBKEY SCOPE IS ATTACH
	4.4.20 RMU Extract of Trigger Fails With BLRINV Error
	4.4.21 RMU Extract Could Generate a Bugcheck When Extracting Views
	4.4.22 RMU BACKUP/AFTER_JOURNAL Creates Empty Files

	4.5 LogMiner Errors Fixed
	4.5.1 RMU/UNLOAD AFTER_JOURNAL AIJ Backup and Restart Information
	4.5.2 Log Qualifier Default for RMU /SET LOGMINER
	4.5.3 RMU/UNLOAD AFTER_JOURNAL Exception in AIJEXT$FINISH

	4.6 Row Cache Errors Fixed
	4.6.1 Shared Memory Improvements for Galaxy Environments
	4.6.2 Record Cache VM Problem
	4.6.3 Row Cache Performance Improvement When ROW REPLACEMENT IS DISABLED
	4.6.4 Log Qualifier Default for RMU /SET ROW_CACHE

	4.7 RMU Show Statistics Errors Fixed
	4.7.1 Config Menu of Transaction Analysis Screen in RMU SHOW STATISTICS Modified to Display Transaction Summary
	4.7.2 RMU Show Statistics Does Not Update Counters With /Time=-n
	4.7.3 Commit Queue Algorithms are no Longer Used
	4.7.4 RMU Show Statistics/Cluster Not Generating OPCOM Messages Consistently
	4.7.5 Stall Message Descriptions Inconsistent
	4.7.6 Ability to Invoke a Procedure From RMU/SHOW STATISTICS When a Stall Exceeds ALARM Seconds
	4.7.7 RMU SHOW STATISTICS Device Information Screen Enhanced

	4.8 Hot Standby Errors Fixed
	4.8.1 LRS Bugchecks at KUTREC$DO_C_AIJBUF + 00001128

	Chapter 5Software Errors Fixed in Oracle Rdb Release 7.1.0.3
	5.1 Software Errors Fixed That Apply to All Interfaces
	5.1.1 Query With Same Column in Two Clauses Returns Wrong Results
	5.1.2 GROUP BY Query Followed by CASE With EXISTS Clause Returns Wrong Results
	5.1.3 ORDER BY Query on a BIGINT or INT Column Returns Wrong Order
	5.1.4 OR Clause With Constant Predicate Returns Wrong Results
	5.1.5 SELECT COUNT(*) Might Bugcheck Under Certain Dialects of SQL
	5.1.6 Getting Null Values Instead of Actual Values
	5.1.7 Another OR With Two Constant Predicates Returns Wrong Results
	5.1.8 Another Query With Same Column in Two Clauses Returns Wrong Results

	5.2 SQL Errors Fixed
	5.2.1 Unexpected TRANSACTION Debug Output for Compound Statements

	5.3 Oracle RMU Errors Fixed
	5.3.1 RMU /CONVERT From V7.1 to V7.1 Did Not Preserve Client Sequences
	5.3.2 RMU/COPY and RMU/MOVE Did Not Preserve Database Client Sequences

	Chapter 6Software Errors Fixed in Oracle Rdb Release 7.1.0.2
	6.1 Software Errors Fixed That Apply to All Interfaces
	6.1.1 Zero Index Prefix Cardinality After Create Index
	6.1.2 RDB-E-ARITH_EXCEPT Error From the Rdb Optimizer
	6.1.3 Page Locking Problems in Release 7.1.0 and Release 7.1.0.1
	6.1.4 Storage Area Default Size Increase
	6.1.5 Recovery Process Caused Excessive Snapshot File Growth
	6.1.6 Dynamic Optimization Estimation Incorrect for Ranked Indices
	6.1.7 Bugchecks Truncating Table in Mixed-Format Area with Row Caches
	6.1.8 Fast Commit Checkpoints Do Not Always Advance
	6.1.9 Monitor "Home" Directory
	6.1.10 Bugcheck When Using Persona With SQL/Services
	6.1.11 Query With Join Predicates on Leading Segments and Equality Filters Returns Wrong Results
	6.1.12 Query With Transitive Join Predicates and Non-equality Filter Bugchecks
	6.1.13 Query With OR Predicates, Including Two Similar IS NULL Clauses, Returns Wrong Results
	6.1.14 Query Slows Down Using Full Index Scan [0:0]
	6.1.15 Poor Choice of Indexes by Dynamic Optimizer
	6.1.16 UNION Query With Constant Column Returns Wrong Results
	6.1.17 Query With CAST Function Using Ranked Index Signals Exception Error
	6.1.18 External Functions Cannot Init, Reason 22
	6.1.19 Bugchecks at PSII2SCANSTARTBBCSCAN
	6.1.20 Cursor on Ranked Index Returned too Many Records
	6.1.21 Changed Default Behavior for Bitmapped Scan Optimization
	6.1.22 Bugcheck (ACCVIO) On Simple Select Statement
	6.1.23 Privileged User Bugcheck (ACCVIO)
	6.1.24 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 00000594
	6.1.25 Unresolved 2PC Transactions Rolled Back by RMU/RECOVER

	6.2 SQL Errors Fixed
	6.2.1 Queries Ending in Reserved Words Fail to Execute in Dynamic SQL
	6.2.2 SQL$MOD Compiler Does Not Recognize G_FLOAT with COBOL
	6.2.3 Unexpected UNSDTPCVT Error Reported for NULL in UNION Statement
	6.2.4 Precompiled SQL Does Not Recognize a C Function With a Struct Return Type
	6.2.5 CREATE INDEX Placing Keys in Wrong Partition
	6.2.6 ALTER INDEX ... TRUNCATE PARTITION Results in Bad Query Results
	6.2.7 ALTER INDEX ... BUILD ALL PARTITIONS Not Writing Back SORTED Index Root Dbkeys
	6.2.8 IMPORT Fails With INVIDXATTR Error for Hashed Indexes
	6.2.9 DDL Statements Generated Unexpected Runtime Errors
	6.2.10 INSERT Cursor on a Derived Table Would Bugcheck
	6.2.11 CREATE TABLE Generates WISH_LIST for NULL Clause
	6.2.12 Use of Synonyms Resulted in an Incorrect Query of System Tables
	6.2.13 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK
	6.2.14 SQL Query Bugchecks at SQL$$GET_QUEUE_WALK
	6.2.15 Multistatement Procedures Used with Connections Resulted in %RDB-E-OBSOLETE_METADA Error Message
	6.2.16 Privileges Not Honored For SET TRANSACTION

	6.3 Oracle RMU Errors Fixed
	6.3.1 RMU Fails to Perform OPTIMIZER_STATISTICS Actions on Some Databases
	6.3.2 RMU/CONVERT Fails to Correctly Define the RDB$WORKLOAD Table
	6.3.3 RMU Tape Density Problems Starting With OpenVMS V7.2-1
	6.3.4 RMU/VERIFY/ROOT Incorrectly Reports RMU-E-BADAIJPN and/or RMU-E-AIJNOTFND
	6.3.5 RMU/CONVERT Problem With Database Wide Default Collating Sequence
	6.3.6 RMU/BACKUP to Tape Could Hang and Not Finish
	6.3.7 RMU/BACKUP or RESTORE Bugcheck on Prompt to Mount a Tape Volume
	6.3.8 RMU/BACKUP Prompt to Initialize Tape Label Created Incorrect Label
	6.3.9 RMU/RECLAIM Returns ACCVIO and Bugchecks at RMU_CLEANUP + 00000100
	6.3.10 RMU/VERIFY/CONSTRAINT Now Uses Warning for CONSTFAIL Message
	6.3.11 RMU Prompt to Operator Console Ignored Correct Responses
	6.3.12 RMU Incremental Backup and Restore Could Cause Truncated Table Rows to Reappear
	6.3.13 Deleted Rows Reappear After RMU/REPAIR
	6.3.14 RMU/EXTRACT Incorrectly Extracts Index STORE Clause When Using GROUP_TABLE Option
	6.3.15 RMU/CONVERT/NOCOMMIT to V71 Lock Conflict Within Default Storage Area
	6.3.16 RMU/COLLECT OPTIMIZER_STATISTICS Fails When Temporary Tables in Database
	6.3.17 RMU/BACKUP and RESTORE RMU-I-RESUME Message Gave Incorrect Volume Number
	6.3.18 RMU/RESTORE Access Violation on Ready Volume Prompt to Operator Console
	6.3.19 RMU/CONVERT to V71 Errors
	6.3.19.1 RMU/CONVERT to V71 Changed the Value of Some Existing System Table Fields
	6.3.19.2 RMU/CONVERT to V71 Truncated the RDB$PARAMETER_SOURCE Value in RDB$PARAMETERS
	6.3.19.3 RMU/CONVERT to V71 Gave Incorrect Values to Some Fields in RDB$CONSTRAINTS
	6.3.19.4 SHOW SEQUENCE Displays Strange Value for NEXT SEQUENCE VALUE

	6.4 Row Cache Errors Fixed
	6.4.1 Bugchecks in PIOGB$PURGE_BUFFER After Node Failure When Row Cache in Use

	6.5 RMU Show Statistics Errors Fixed
	6.5.1 RMU/SHOW STATISTICS Does Not Honor CHECKPOINT_SORT
	6.5.2 RMU/SHOW STATISTICS CHECKPOINT_ALARM Does Not Give Out OPCOMs
	6.5.3 Possible RMU Bugcheck or Failure to Notify Triggering of User Defined Events
	6.5.4 AUTO_RECONNECT Variable Value is not Honored When Imported From a RMU/SHOW STATISTICS Configuration File
	6.5.5 Some RMU/SHOW STATISTICS Counters Can Be Used To Define Events In Interactive Mode But Not In Batch Mode
	6.5.6 Stream ID Format is Different in Different Places
	6.5.7 RMU/SHOW STATISTICS Online Analysis Configuration Options Do Not Work Properly
	6.5.8 Missing "U" for Utility Jobs in RMU/SHOW STATISTICS Displays
	6.5.9 RMU/SHOW STATISTICS Mixes Up Count Labels
	6.5.10 Errors in Saved RMU/SHOW STATISTICS Configuration File
	6.5.11 RMU/SHOW STATISTICS Shows Incorrect Area Sizes
	6.5.12 RMU/SHOW STATISTICS Multi-Page Report File
	6.5.13 RMU/SHOW STATISTICS Triggers Invoked From User Defined Events at Times Other Than the Refresh Intervals
	6.5.14 RMU/SHOW STATISTICS Row Cache Information May Not Display the Information of the Cache Selected
	6.5.15 Inconsistency in the Hot Standby Statistics Screen of RMU/SHOW STATISTICS

	6.6 Hot Standby Errors Fixed
	6.6.1 7.1.0.1 Process Hangs During AIJ Switchover
	6.6.2 Could Not Use TCP/IP As Hot Standby Network Transport

	Chapter 7Software Errors Fixed in Oracle Rdb Release 7.1.0.1
	7.1 Software Errors Fixed That Apply to All Interfaces
	7.1.1 Excessive Disk I/O for DROP TABLE and TRUNCATE TABLE
	7.1.2 LIST Storage Map Not Updated Upon ALTER or DROP TABLE
	7.1.3 ARBs Exhausted
	7.1.4 CLEAN BUFFER COUNT Parameter Not Obeyed
	7.1.5 DETECTED ASYNCHRONOUS PREFETCH THRESHOLD Not Obeyed
	7.1.6 Page Locks Not Demoted at End of Transaction When FAST COMMIT Enabled
	7.1.7 Bitmapped Scan Causes Bugcheck on Transaction Termination
	7.1.8 Problems With Column Outlines
	7.1.9 Count Scan Optimization Incorrectly Returning Count of 0
	7.1.10 Disabling AIJ When Row Cache Recovery Required
	7.1.11 Bitmapped Scan Problem With Large Indexes
	7.1.12 Query With Range List OR Predicates Returns Wrong Results
	7.1.13 Database Corruption Using Cluster With Galaxy and Non-Galaxy Nodes
	7.1.14 Performance Problems when RDM$BIND_SNAP_QUIET_POINT Defined to 0
	7.1.15 Workload Ignored When Loaded with RMU/INSERT OPTIMIZER_STATISTICS
	7.1.16 Descending Sort Not Producing Correct Ordering for BIGINT and DATE Columns
	7.1.17 Bitmapped Scan Incorrectly Chosen by Optimizer
	7.1.18 Cannot Connect With Remote Access When Using a Logical
	7.1.19 Query Joining Derived Tables of Union Legs With Empty Tables Returns Wrong Results
	7.1.20 Left Outer Join Query With OR Predicate Returns Wrong Results
	7.1.21 Query Using Match Strategy With DISTINCT Function Returns Wrong Results
	7.1.22 GROUP BY Query With SUM Aggregate Returns Wrong Results
	7.1.23 ROLLBACK Hangs Under DECdtm When Called From an ACMS CANCEL Procedure
	7.1.24 COMPUTED BY Columns Now Automatically Reserve Referenced Tables

	7.2 SQL Errors Fixed
	7.2.1 Command Line Recall Expanded to 255 Lines
	7.2.2 New Minimum Value for the INTERVAL Leading Precision
	7.2.3 Incorrect Processing of CASE Expression
	7.2.4 ALTER TABLE Not Dropping NOT NULL Constraints When NULL Clause Used
	7.2.5 Some Constraint Definitions Not Supported for AUTOMATIC Columns
	7.2.6 %RDB-E-NO_DIST_BATCH_U Error When Executing SET TRANSACTION
	7.2.7 Select With Identical "not in" Clauses
	7.2.8 Keyword Matching Now Reported by Interactive SQL
	7.2.9 CREATE MODULE Bugchecks When a Subselect is Used as a Parameter DEFAULT
	7.2.10 Obsolete Metadata Errors When Using Rdb SQL V7.1 to Access Oracle Rdb V7.0 Databases
	7.2.11 SQL$PRE and SQL$MOD Performance Improvements
	7.2.12 Incompatible Character Sets Not Detected by SQL Interface
	7.2.13 SQLMOD Fails to Set Default Character Set Correctly

	7.3 Oracle RMU Errors Fixed
	7.3.1 RMU Extract Not Formatting View Column Expressions Correctly
	7.3.2 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records Clarification
	7.3.3 RMU/DUMP/BACKUP Did Not Check the VMS BYPASS Privilege
	7.3.4 RMU/BACKUP Invalid Volume 1 Tape Label When Used With HP SLS
	7.3.5 RMU/ANALYZE/CARDINALITY Fails on Databases With Local Temporary Tables
	7.3.6 File Name Not Displayed By RMU /RESTORE for Extend Failure
	7.3.7 RMU/SHOW STATISTICS Allowed Suspend of Disabled ABS
	7.3.8 RMU/COPY/BLOCKS_PER_PAGE Can Corrupt Copied Database Uniform Areas
	7.3.9 DROPped Storage Area and RMU /VERIFY in Cluster
	7.3.10 RMU /VERIFY Checks All Storage Area Files First
	7.3.11 RMU/SHOW STATISTICS Multi-Page Report File
	7.3.12 Area Locks Demoted Statistic Not Always Correctly Incremented
	7.3.13 RMU /BACKUP /ONLINE /NOQUIET_POINT Fails

	7.4 LogMiner Errors Fixed
	7.4.1 LogMiner Compresses Pre-Delete Record Content

	7.5 Optimizer Problems Fixed in Oracle Rdb Release 7.1.0.
	7.5.1 Query Having OR Compound Predicates With Subquery Returns Wrong Results
	7.5.2 Query Using OR/AND Predicates With EXISTS Clause Returns Wrong Results
	7.5.3 Query Using German Collating Sequence Returns Wrong Results
	7.5.4 Left Outer Join Query Returns Wrong Results When ON Clause Evaluates to False
	7.5.5 Query With Two IN Clauses on Two Subqueries Returns Wrong Results
	7.5.6 Query Having Same SUBSTRINGs Within CASE Expression Returns Wrong Results
	7.5.7 Aggregate Query With Nested MIN Function Returns Wrong Results
	7.5.8 Query with UNION Subselect Returns Wrong Results
	7.5.9 Query with CONCATENATE in BETWEEN Clause Returns Wrong Results
	7.5.10 ORDER BY Query With GROUP BY on Two Joined Derived Tables Returns Wrong Results
	7.5.11 Left Outer Join Query With CONCATENATE Returns Wrong Results
	7.5.12 Query With UNION in German Collating Sequence Returns Wrong Results
	7.5.13 Query With OR Predicate on Aggregate Column Returns Wrong Results
	7.5.14 Query With Equality Predicate Included in IN Clause Returns Wrong Results
	7.5.15 Match Strategy on Columns of Different Size, Using Collating Sequence, Returns Wrong Results
	7.5.16 Left Outer Join Query With CAST Function on USING Column Bugchecks
	7.5.17 Query Using Constant Values in OR Predicates Returns Wrong Results

	Chapter 8Enhancements
	8.1 Enhancements Provided in Oracle Rdb Release 7.1.1
	8.1.1 Scan Intrusion Security Now Supported

	8.2 Enhancements Provided in Oracle Rdb Release 7.1.0.4
	8.2.1 RMU Unload After_Journal Wildcard Table Names
	8.2.2 Enhancements to RMU Extract
	8.2.3 RMU /SET ROW_CACHE /ALTER Command
	8.2.4 New Keyword SCREEN_NAME for RMU/SHOW STATISTICS/OPTIONS
	8.2.5 New RMU /SET SHARED_MEMORY /TYPE Command
	8.2.6 Zoom Option for "Process Analysis" Screen in RMU/SHOW STATISTICS
	8.2.7 Statistics Collection Performance Improvement for AlphaServer GS Systems
	8.2.8 New PRAGMA Clause Added to SQL Compound Statements
	8.2.9 New DECLARE Routine Statement
	8.2.10 New AUTO_INDEX Option Added for SET FLAGS

	8.3 Enhancements Provided in Oracle Rdb Release 7.1.0.2
	8.3.1 Buffer Objects Enhancements
	8.3.2 RMU Support Added for New OpenVMS Tape Density Values
	8.3.3 Ability to Compress RMU/SHOW STATISTICS Output File Added
	8.3.4 IEEE Floating Point Format for SQL Module Language and Precompiled SQL
	8.3.4.1 SQL Module Language (SQL$MOD)
	8.3.4.2 Precompiled SQL (SQL$PRE)
	8.3.4.3 Use of the Dynamic Descriptor Areas (SQLDA and SQLDA2)
	8.3.4.4 Use of Common Data Dictionary (CDD)

	8.3.5 INCLUDE_DB_NAME Event Attribute for RMU/SHOW STATISTICS User Defined Events
	8.3.6 New ALTER OUTLINE Statement
	8.3.7 DROP Statement Now Includes IF EXISTS Clause
	8.3.8 New EXCEPT, INTERSECT and MINUS Operators
	8.3.9 IDENTITY Attribute Now Supported by Oracle Rdb
	8.3.10 Enhanced Bitmapped Scans
	8.3.11 Extended Record Compression
	8.3.12 RMU /UNLOAD /AFTER_JOURNAL Wildcard Table Names
	8.3.13 New NAME Clause for SET/DECLARE TRANSACTION Statement
	8.3.14 New Built In Functions for Oracle RDBMS Compatibility
	8.3.15 New AND CHAIN Syntax Supported for COMMIT and ROLLBACK
	8.3.16 New Options for SET FLAGS Statement

	8.4 Enhancements Provided in Oracle Rdb Release 7.1.0.1
	8.4.1 SQL Now Supports a Native ABS Function
	8.4.2 New DUMP Output Format for LogMiner
	8.4.3 Data and SPAM Prefetch Screens Added to RMU/SHOW STATISTICS
	8.4.4 RMU/SHOW STATISTICS Stall Log Lock Information Optional
	8.4.5 New Option for the GET DIAGNOSTICS Statement
	8.4.6 Alternate Outline Ids
	8.4.7 Field Widths Wider on Row Cache Overview Display
	8.4.8 FOR Counted Loop Enhancements
	8.4.9 Enhancements to SET DISPLAY Statement for Interactive SQL
	8.4.10 New BITSTRING Built In Function
	8.4.11 New SET PAGE LENGTH Command for Interactive SQL
	8.4.12 New ALTER CONSTRAINT Statement
	8.4.13 DECLARE Variable Now Supports CHECK Constraint
	8.4.14 RMU/SHOW STATISTICS Active User Stall Messages Sorted by Process ID
	8.4.15 RMU /REPAIR /INITIALIZE ONLY_LAREA_TYPE Keyword
	8.4.16 RMU/SHOW STATISTICS Cluster Data Collection Performance Enhancement
	8.4.17 RMU Extract has Enhanced Extract of Conditional Expressions

	8.5 Enhancements Provided in Oracle Rdb 7.0 Releases
	8.5.1 Enhancements to Range Queries on SORTED Indexes

	Chapter 9Oracle Rdb Continuous LogMiner
	9.1 RMU Unload After_Journal Command
	Format
	DESCRIPTION
	COMMAND PARAMETERS
	root-file-spec
	aij-file-name

	COMMAND QUALIFIERS
	Before=date-time
	Continuous
	NoContinuous
	Extend_Size=integer
	Format=options
	Include=Action=include-type
	IO_Buffers=integer
	Log
	Nolog
	Options=options-list
	Order_AIJ_Files
	NoOrder_AIJ_Files
	Output=file-spec
	Parameter=character-strings
	Restart=restart-point
	Restore_Metadata=file-spec
	Save_Metadata=file-spec
	Select=selection-type
	Since=date-time
	Sort_Workfiles=integer
	Statistics_Interval=integer
	Table=(Name=table-name, table-options)
	Trace
	NoTrace

	USAGE NOTES
	USAGE NOTES FOR THE CONTINUOUS LOGMINER FEATURE
	EXAMPLES

	9.2 RMU Set Logminer Command
	Format
	DESCRIPTION
	COMMAND PARAMETERS
	root-file-spec

	COMMAND QUALIFIERS
	Continuous
	NoContinuous
	Disable
	Enable
	Log
	Nolog

	USAGE NOTES
	EXAMPLES

	9.3 RMU Dump /Header Command Enhanced
	9.4 RMU Show Statistics Utility Enhanced
	9.5 AERCP Format
	Chapter 10Documentation Corrections, Additions and Changes
	10.1 Documentation Corrections
	10.1.1 Explanation of SQL$INT in a SQL Multiversion Environment and How to Redefine SQL$INT
	10.1.2 Documentation Omitted Several Reserved Words
	10.1.3 Additional Usage Notes for ALTER INDEX
	10.1.4 Using Databases from Releases Earlier Than V6.0
	10.1.5 Clarification of PREPARE Statement Behavior
	10.1.6 CREATE OUTLINE Supports Trigger, Constraint, Column and View Outlines
	10.1.7 New RMU/BACKUP Storage Area Assignment With Thread Pools
	10.1.8 DROP INDEX Now an Online Table Operation
	10.1.9 AUTOMATIC Clause Not Supported in ALTER TABLE ... ALTER COLUMN
	10.1.10 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter
	10.1.11 New Request Options for RDO, RDBPRE and RDB$INTERPRET
	10.1.12 Missing Descriptions of RDB$FLAGS from HELP File

	10.2 Address and Phone Number Correction for Documentation
	10.3 Online Document Format and Ordering Information
	10.4 New and Changed Features in Oracle Rdb Release 7.1
	10.4.1 PERSONA is Supported in Oracle SQL/Services
	10.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be Delimited Identifiers
	10.4.3 Only=select_list Qualifier for the RMU Dump After_Journal Command

	10.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases
	10.5.1 Restrictions Lifted on After-Image Journal Files
	10.5.2 Changes to RMU Replicate After_Journal ... Buffer Command
	10.5.3 Unnecessary Command in the Hot Standby Documentation
	10.5.4 Change in the Way RDMAIJ Server is Set Up in UCX
	10.5.5 CREATE INDEX Operation Supported for Hot Standby

	10.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide
	10.6.1 Suggestion to Increase GH_RSRVPGCNT Removed
	10.6.2 Prerequisite Software
	10.6.3 Defining the RDBSERVER Logical Name

	10.7 Guide to Database Design and Definition
	10.7.1 Lock Timeout Interval Logical Incorrect
	10.7.2 Example 4-13 and Example 4-14 Are Incorrect

	10.8 Oracle Rdb7 SQL Reference Manual
	10.8.1 Clarification of the DDLDONOTMIX Error Message
	10.8.2 Node Specification Allowed on Root FILENAME Clauses
	10.8.3 Incorrect Syntax Shown for Routine-Clause of the CREATE MODULE Statement
	10.8.4 Omitted SET Statements
	10.8.4.1 QUIET COMMIT
	10.8.4.2 COMPOUND TRANSACTIONS

	10.8.5 Size Limit for Indexes with Keys Using Collating Sequences
	10.8.6 Clarification of SET FLAGS Option DATABASE_PARAMETERS
	10.8.7 Incorrect Syntax for CREATE STORAGE MAP Statement
	10.8.8 Use of SQL_SQLCA Include File Intended for Host Language File
	10.8.9 Missing Information on Temporary Tables

	10.9 Oracle RMU Reference Manual, Release 7.0
	10.9.1 RMU Unload After_Journal Null Bit Vector Clarification
	10.9.2 New Transaction_Mode Qualifier for Oracle RMU Commands
	10.9.3 RMU Server After_Journal Stop Command
	10.9.4 Incomplete Description of Protection Qualifier for RMU Backup After_Journal Command
	10.9.5 RMU Extract Command Options Qualifier
	10.9.6 RDM$SNAP_QUIET_POINT Logical is Incorrect
	10.9.7 Using Delta Time with RMU Show Statistics Command

	10.10 Oracle Rdb7 Guide to Database Performance and Tuning
	10.10.1 Dynamic OR Optimization Formats
	10.10.2 Oracle Rdb Logical Names
	10.10.3 Waiting for Client Lock Message
	10.10.4 RDMS$TTB_HASH_SIZE Logical Name
	10.10.5 Error in Updating and Retrieving a Row by Dbkey Example 3-22
	10.10.6 Error in Calculation of Sorted Index in Example 3-46
	10.10.7 Documentation Error in Section C.7
	10.10.8 Missing Tables Descriptions for the RDBEXPERT Collection Class
	10.10.9 Missing Columns Descriptions for Tables in the Formatted Database
	10.10.10 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database
	10.10.11 Using Oracle TRACE Collected Data
	10.10.12 AIP Length Problems in Indexes that Allow Duplicates
	10.10.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification

	10.11 Oracle Rdb7 Guide to SQL Programming
	10.11.1 Location of Host Source File Generated by the SQL Precompiler
	10.11.2 Remote User Authentication
	10.11.3 Additional Information About Detached Processes

	10.12 Guide to Using Oracle SQL/Services Client APIs
	10.13 Updates to System Relations
	10.13.1 Clarification on Updates to the RDB$LAST_ALTERED Column for the RDB$DATABASE System Relation
	10.13.2 Missing Descriptions of RDB$FLAGS

	10.14 Error Messages
	10.14.1 Clarification of the DDLDONOTMIX Error Message

	Chapter 11Known Problems and Restrictions
	11.1 Known Problems and Restrictions in All Interfaces
	11.1.1 Multi-Disk File RMU Backup and Restore Should Not Be Used
	11.1.2 SYSTEM-F-INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy Environment
	11.1.3 Oracle Rdb and OpenVMS ODS-5 Volumes
	11.1.4 Optimization of Check Constraints
	11.1.5 Using Databases from Releases Earlier Than V6.0
	11.1.6 PAGE TRANSFER VIA MEMORY Disabled
	11.1.7 Carryover Locks and NOWAIT Transaction Clarification
	11.1.8 Unexpected Results Occur During Read-Only Transactions on a Hot Standby Database
	11.1.9 IMPORT Unable to Import Some View Definitions
	11.1.10 Both Application and Oracle Rdb Using SYS$HIBER
	11.1.11 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
	11.1.12 Read-only Transactions Fetch AIP Pages Too Often
	11.1.13 Row Cache Not Allowed While Hot Standby Replication is Active
	11.1.14 Excessive Process Page Faults and other Performance Considerations During Oracle Rdb Sorts
	11.1.15 Control of Sort Work Memory Allocation
	11.1.16 The Halloween Problem

	11.2 SQL Known Problems and Restrictions
	11.2.1 Unexpected CONVERT_ERROR Exception When Querying Partitioned Index
	11.2.2 Interchange File (RBR) Created by Oracle Rdb Release 7.1 Not Compatible With Previous Releases
	11.2.3 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME
	11.2.4 Problem Exporting and Importing Sequences with ANSI-Style Databases
	11.2.5 System Relation Change for International Database Users
	11.2.6 Single Statement CALL Does Not Support Truncated Parameter List or DEFAULT Keyword
	11.2.7 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL Precompiler
	11.2.8 Restriction for CREATE STORAGE MAP Statement on Table with Data
	11.2.9 Multistatement or Stored Procedures May Cause Hangs
	11.2.10 Use of Oracle Rdb from Shareable Images

	11.3 Oracle RMU Known Problems and Restrictions
	11.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been Disabled
	11.3.2 RMU Convert Fails When Maximum Relation ID is Exceeded
	11.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information
	11.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal Command
	11.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup
	11.3.6 Default for RMU CRC Qualifier Changing in Future Release
	11.3.7 RMU Backup Operations Should Use Only One Type of Tape Drive
	11.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

	11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier
	11.4.1 Converting Single-File Databases
	11.4.2 Row Caches and Exclusive Access
	11.4.3 Exclusive Access Transactions May Deadlock with RCS Process
	11.4.4 Strict Partitioning May Scan Extra Partitions
	11.4.5 Restriction When Adding Storage Areas with Users Attached to Database
	11.4.6 Support for Single-File Databases to Be Dropped in a Future Release
	11.4.7 Multiblock Page Writes May Require Restore Operation
	11.4.8 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application

	11.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier
	11.5.1 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area
	11.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	11.5.3 Different Methods of Limiting Returned Rows from Queries
	11.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation
	11.5.5 Side Effect When Calling Stored Routines
	11.5.6 Considerations When Using Holdable Cursors

